This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Efficient Power Electronic Inverter Control Developed in an Automotive Hardware-in-the-Loop Setup
Technical Paper
2019-01-0601
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Hardware-in-the-Loop is a common and established testing method for automotive developments in order to study interactions between different vehicle components during early development phases. Hardware-in-the-Loop setups have successfully been utilized within several development programs for conventional and electrified powertrains already. However, there is a particular shortage of studies focusing on the development of inverter controls utilizing Hardware-in-the-Loop tests. This contribution shall provide a first step toward closing this gap. In this article, inverter controls with different pulse width modulations for varying modulation index are studied at a Hardware-in-the-Loop setup. Thereto, the inverter control for an interior permanent magnet synchronous machine is developed utilizing space vector pulse width modulation with overmodulation. The starting point for the inverter control implementation includes power and loss analyses for the power electronic inverter as well as for the interior permanent magnet synchronous machine at a laboratory test bench. Comparing space vector pulse width modulation with and without overmodulation, it is determined that the system losses are reduced by 9 % and the power is increased by 8 %, which verifies the performance improvement by applying overmodulation. In addition, a real-time vehicle dynamics simulation of a battery operated electric powertrain is developed. The required driving resistance parameters for the vehicle dynamics simulation are verified based on defined vehicle coast down test results. The vehicle dynamics simulation is combined with the inverter control and the test bench components to a Hardware-in-the-Loop setup complying with real-time conditions. The power of the interior permanent magnet synchronous machine is increased by virtual scaling of its active length, which demonstrates the testing variability of the Hardware-in-the-Loop setup. This modified electric powertrain and the newly developed inverter control are tested in the class 3 worldwide harmonized light vehicles test cycle. The interactions between the inverter control and the electric powertrain are analyzed and the results are discussed. Moreover, the Hardware-in-the-Loop methodology’s ability to accelerate the development process for automotive applications is demonstrated.
Recommended Content
Technical Paper | Development of an Advanced Motor Control System for Electric Vehicles |
Technical Paper | Energy-Efficient Traction Induction Machine Control |
Authors
- Konstantin Etzold - RWTH Aachen University
- Claas Kürten - RWTH Aachen University
- Andreas Thul - RWTH Aachen University
- Lukas Müller - RWTH Aachen University
- René Scheer - RWTH Aachen University
- Max-Arno Meyer - RWTH Aachen University
- Christian Granrath - RWTH Aachen University
- Michael Schröder - RWTH Aachen University
- Kay Hameyer - RWTH Aachen University
- Jakob Andert - RWTH Aachen University
Citation
Etzold, K., Kürten, C., Thul, A., Müller, L. et al., "Efficient Power Electronic Inverter Control Developed in an Automotive Hardware-in-the-Loop Setup," SAE Technical Paper 2019-01-0601, 2019, https://doi.org/10.4271/2019-01-0601.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 |
Also In
References
- Kerga , E. , Schmid , R. , Rebentisch , E. , and Terzi , S. Modeling the Benefits of Frontloading and Knowledge Reuse in Lean Product Development 2016 Portland International Conference on Management of Engineering and Technology (PICMET) Honolulu, USA 2016 IEEE 2532 2542
- Andert , J. , Klein , S. , Savelsberg , R. , Pischinger , S. et al. Virtual Shaft: Synchronized Motion Control for Real Time Testing of Automotive Powertrains Control Engineering Practice 56 101 110 2016 10.1016/j.conengprac.2016.08.005
- Xia , F. , Lee , S.-Y. , Andert , J. , Kampmeier , A. et al. Crank-Angle Resolved Real-Time Engine Modelling A Seamless Transfer from Concept Design to HiL Testing SAE Technical Paper 2018-01-1245 2018 10.4271/2018-01-1245
- Schiffbaenker , P. and Shankavaram , R. Following the Path to Electrification with a Holistic Battery Development Approach 2017 IEEE Transportation Electrification Conference (ITEC-India) Pune 2017 IEEE 2017 1 6 978-1-5386-2668-9
- Eisenbarth , M. , Etzold , K. , Andert , J. , Plum , T. et al. A Holistic Methodology for the Development of Connected Hybrid Vehicles Symposium für Entwicklungsmethodik 2017 2017
- Etzold , K. , Granrath , C. , Klein , S. , Eisenbarth , M. et al. Virtuelle Elektrifizierung - Ein nahtloser Entwicklungsprozess für Closed-Loop-Testing von elektrischen Antriebsstraengen E-MOTIVE Expertenforum Hannover, Germany 2017
- Thomke , S. The Effect of “Front-Loading” Problem-Solving on Product Development Performance Journal of Product Innovation Management 17 2 128 142 2000 10.1016/S0737-6782(99)00031-4
- Muli , M. and Cassar , J. Virtual Validation-A New Paradigm in Controls Engineering SAE Technical Paper 2013-01-2404 2013 10.4271/2013-01-2404
- Schäuffele , J. and Zurawka , T. Automotive Software Engineering: Grundlagen, Prozesse, Methoden und Werkzeuge ATZ/MTZ-Fachbuch 2nd Wiesbaden Vieweg+Teubner Verlag 2004 978-3-322-91947-2
- Fathy , H.K. , Filipi , Z.S. , Hagena , J. , and Stein , J.L. Review of Hardware-in-the-Loop Simulation and Its Prospects in the Automotive Area Modeling and Simulation for Military Applications; Proceedings Volume 6228, Defense and Security Symposium Orlando (Kissimmee), United States 2006
- Wagener , A. , Schulte , T. , Waeltermann , P. , and Schuette , H. Hardware-in-the-Loop Test Systems for Electric Motors in Advanced Powertrain Applications SAE Technical Paper 2007-01-0498 2007 10.4271/2007-01-0498
- Bouscayrol , A. Different Types of Hardware-In-the-Loop Simulation for Electric Drives 2008 IEEE International Symposium on Industrial Electronics Cambridge IEEE 2008 2146 2151 978-1-4244-1665-3
- Mocera , F. and Soma , A. Study of a Hardware-In-the-Loop Bench for Hybrid Electric Working Vehicles Simulation 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER) Monte-Carlo, Monaco 2017 IEEE 1 8 978-1-5386-1692-5
- Li , W. , Gregoire , L.-A. , Souvanlasy , S. , and Belanger , J. An FPGA-Based Real-Time Simulator for HIL Testing of Modular Multilevel Converter Controller IEEE Energy Conversion Congress and Exposition (ECCE) 2014 Pittsburgh, USA 2014 IEEE 2088 2094 978-1-4799-5776-7
- Lemaire , M. , Sicard , P. , and Belanger , J. Prototyping and Testing Power Electronics Systems Using Controller Hardware-In-the-Loop (HIL) and Power Hardware-In-the-Loop (PHIL) Simulations 2015 IEEE Vehicle Power and Propulsion Conference (VPPC) Montreal, Canada 2015 IEEE 1 6 978-1-4673-7637-2
- Zyuzev , A.M. , Mudrov , M.V. , and Nesterov , K.E. PHIL-System for Electric Drives Application 2016 IX International Conference on Power Drives Systems (ICPDS) Perm, Russia 2016 IEEE 1 4 978-1-5090-1474-3
- Guse , D. , Klein , S. , Andert , J. , Pischinger , S. et al. Virtual Transmission Evaluation Using an Engine-in-the-Loop Test Facility SAE Technical Paper 2018-01-1361 2018 10.4271/2018-01-1361
- Klein , S. , Griefnow , P. , Guse , D. , Xia , F. et al. Virtual 48V Mild Hybridization: Efficient Validation by Engine-in-the-Loop SAE Int. J. Alt. Power. 7 3 2018 10.4271/2018-01-0410
- Klein , S. , Savelsberg , R. , Xia , F. , Guse , D. et al. Engine in the Loop: Closed Loop Test Bench Control with Real-Time Simulation SAE Int. J. Commer. Veh. 10 1 95 105 2017 10.4271/2017-01-0219
- Schupbach , R.M. and Balda , J.C. A Versatile Laboratory Test Bench for Developing Powertrains of Electric Vehicles Proceedings IEEE 56th Vehicular Technology Conference Vancouver, Canada 2002 IEEE 1666 1670 0-7803-7467-3
- Filipi , Z. , Fathy , H. , Hagena , J. , Knafl , A. et al. Engine-in-the-Loop Testing for Evaluating Hybrid Propulsion Concepts and Transient Emissions - HMMWV Case Study SAE Technical Paper 2006-01-0443 2006 10.4271/2006-01-0443
- Oh , S.C. Evaluation of Motor Characteristics for Hybrid Electric Vehicles Using the Hardware-in-the-Loop Concept IEEE Trans. Veh. Technol. 54 3 817 824 2005 10.1109/TVT.2005.847228
- Tabbache , B. , Aboub , Y. , Marouani , K. , Kheloui , A. et al. A Simple and Effective Hardware-in-the-Loop Simulation Platform for Urban Electric Vehicles 2012 First International Conference on Renewable Energies and Vehicular Technology Nabeul, Tunisia 2012 IEEE 251 255 978-1-4673-1170-0
- Hu , Z. 2017
- Trigui , R. , Jeanneret , B. , Malaquin , B. , and Plasse , C. Performance Comparison of Three Storage Systems for Mild HEVs Using PHIL Simulation IEEE Trans. Veh. Technol. 58 8 3959 3969 2009 10.1109/TVT.2009.2028146
- Mudrov , M. , Ziuzev , A. , Nesterov , K. , and Valtchev , S. Asynchronous Electric Drive Power-Hardware-in-the-Loop System 2018 17th International Ural Conference on AC Electric Drives (ACED) Ekaterinburg, Russia 2018 IEEE 1 5 978-1-5386-2422-7
- Wallscheid , O. and Bocker , J. Derating of Automotive Drive Systems Using Model Predictive Control 2017 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE) Pilsen, Czech Republic 2017 IEEE 31 36 978-1-5386-0507-3
- Liu , J. 2007
- European Parliament 2017
- Liu , Q. and Hameyer , K. A Deep Field Weakening Control for the PMSM Applying a Modified Overmodulation Strategy 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016) Glasgow, UK 2016 IEEE 6 978-1-78561-188-9
- Duesterhoeft , W.C. , Schulz , M.W. , and Clarke , E. Determination of Instantaneous Currents and Voltages by Means of Alpha, Beta, and Zero Components Trans. Am. Inst. Electr. Eng. 70 2 1248 1255 1951 10.1109/T-AIEE.1951.5060554
- Probst , U. Leistungselektronik für Bachelors: Grundlagen und praktische Anwendungen 3rd ed. 2015 978-3-446-44428-7
- Gemaßmer , T. 2015
- Gemassmer , T. , Richter , J. , Schnarrenberger , M. , and Braun , M. Dynamic Overmodulation for Highly Dynamic Current Control of IPMSM with Saturation Characteristics International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2014 Ischia, Italy IEEE 842 847 978-1-4799-4749-2
- Lerdudomsak , S. , Doki , S. , and Okuma , S. Voltage Limiter Calculation Method for Fast Torque Response of IPMSM in Overmodulation Range 35th Annual Conference of IEEE Industrial Electronics, 2009 Porto, Portugal IEEE 1383 1388 978-1-4244-4648-3
- Rathnakumar , D. , LakshmanaPerumal , J. , and Srinivasan , T. A New Software Implementation of Space Vector PWI Proceedings of the IEEE SoutheastCon 2005 Ft. Lauderdale, USA 2005 IEEE 131 136 0-7803-8865-8