This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Laminar Burning Velocities of High-Performance Fuels Relevant to the Co-Optima Initiative

Journal Article
2019-01-0571
ISSN: 2641-9645, e-ISSN: 2641-9645
Published April 02, 2019 by SAE International in United States
Laminar Burning Velocities of High-Performance Fuels Relevant to the Co-Optima Initiative
Sector:
Citation: Kim, G., Almansour, B., Park, S., Terracciano, A. et al., "Laminar Burning Velocities of High-Performance Fuels Relevant to the Co-Optima Initiative," SAE Int. J. Adv. & Curr. Prac. in Mobility 1(3):1139-1147, 2019, https://doi.org/10.4271/2019-01-0571.
Language: English

References

  1. Terracciano , A.C. , De Oliveira , S. , Robayo , M. , Vasu , S.S. et al. Flow Stabilized Porous Heterogeneous Combustor. Part I: Design and Development Fuel Processing Technology 159 353 362 2017 10.1016/j.fuproc.2017.01.036
  2. Habib , S. , Kamran , M. , and Rashid , U. Impact Analysis of Vehicle-to-Grid Technology and Charging Strategies of Electric Vehicles on Distribution Networks - A Review Journal of Power Sources 277 205 214 2015 10.1016/j.jpowsour.2014.12.020
  3. Ross , D.K. Hydrogen Storage: The Major Technological Barrier to the Development of Hydrogen Fuel Cell Cars Vacuum 80 10 1084 1089 2006 10.1016/j.vacuum.2006.03.030
  4. Pimentel , D. and Patzek , T.W. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower Natural Resources Research 14 1 65 76 2005 10.1007/s11053-005-4679-8
  5. Wheals , A.E. , Basso , L.C. , Alves , D.M.G. , and Amorim , H.V. Fuel Ethanol after 25 Years Trends in Biotechnology 17 12 6 1999
  6. Egolfopoulos , F.N. , D.X. , Du , and Law , C.K. A Study on Ethanol Oxidation Kinetics in Laminar Premixed Flames, Flow Reactors, and Shock Tubes Paper presented at the Symposium (International) on Combustion 1992
  7. Beeckmann , J. , Cai , L. , and Pitsch , H. Experimental Investigation of the Laminar Burning Velocities of Methanol, Ethanol, N-Propanol, and N-Butanol at High Pressure Fuel 117 340 350 2014
  8. Badawy , T. , Williamson , J. , and Xu , H. Laminar Burning Characteristics of Ethyl Propionate, Ethyl Butyrate, Ethyl Acetate, Gasoline and Ethanol Fuels Fuel 183 627 640 2016 10.1016/j.fuel.2016.06.087
  9. Su , B. , Song , J. , Chen , C. , Zhao , Z. et al. Effect of Ethanol on Ethylene Consumption in Premixed Laminar Flames of Ethylene and Ethanol: A Modeling Study Energy & Fuels 31 5 5507 5513 2017 10.1021/acs.energyfuels.6b02606
  10. Eisazadeh-Far , K. , Moghaddas , A. , Al-Mulki , J. , and Metghalchi , H. Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures Proceedings of the Combustion Institute 33 1 1021 1027 2011 10.1016/j.proci.2010.05.105
  11. Mittal , G. , Burke , S.M. , Davies , V.A. , Parajuli , B. et al. Autoignition of Ethanol in a Rapid Compression Machine Combustion and Flame 161 5 1164 1171 2014 10.1016/j.combustflame.2013.11.005
  12. Stein , R.A. , House , C.J. , and Leone , T.G. Optimal Use of E85 in a Turbocharged Direct Injection Engine SAE Int. J. Fuels Lubr. 2 1 670 682 2009 10.4271/2009-01-1490
  13. Kar , K. , Last , T. , Haywood , C. , and Raine , R. Measurement of Vapor Pressures and Enthalpies of Vaporization of Gasoline and Ethanol Blends and their Effects on Mixture Preparation in an SI Engine SAE Int. J. Fuels Lubr. 1 1 132 144 2008 10.4271/2008-01-0317
  14. Masum , B.M. , Masjuki , H.H. , Kalam , M.A. , Rizwanul Fattah , I.M. et al. Effect of Ethanol-Gasoline Blend on NOx Emission in Si Engine Renewable and Sustainable Energy Reviews 24 209 222 2013 10.1016/j.rser.2013.03.046
  15. Farrell , J. Co-Optimization of Fuels and Engines Conference: Presented at the SAE 2016 High Efficiency Internal Combustion Engine Symposium 10-11 April 2016 Detroit, Michigan 2016 http://www.osti.gov/scitech/servlets/purl/1250431
  16. Farrell , J. , Holladay , J. , and R. , Wagner 2018
  17. Pizzuti , L. , Martins , C.A. , and Lacava , P.T. Laminar Burning Velocity and Flammability Limits in Biogas: A Literature Review Renewable and Sustainable Energy Reviews 62 856 865 2016 10.1016/j.rser.2016.05.011
  18. Yu , W. , Hidajat , K. , and Ray , A.K. Determination of Adsorption and Kinetic Parameters for Methyl Acetate Esterification and Hydrolysis Reaction Catalyzed by Amberlyst 15 Applied Catalysis A: General 260 2 191 205 2004 10.1016/j.apcata.2003.10.017
  19. Agreda , V.H. , Partin , L.R. , and Heise , W.H. High-Purity Methyl Acetate via Reactive Distillation Chemical Engineering Progress Heise 40 46 1990
  20. Herbinet , O. , Pitz , W.J. , and Westbrook , C.K. Detailed Chemical Kinetic Mechanism for the Oxidation of Biodiesel Fuels Blend Surrogate Combustion and Flame 157 5 893 908 2010 10.1016/j.combustflame.2009.10.013
  21. Ahmed , A. , Pitz , W.J. , Cavallotti , C. , Mehl , M. et al. Small Ester Combustion Chemistry: Computational Kinetics and Experimental Study of Methyl Acetate and Ethyl Acetate Proceedings of the Combustion Institute 2018 10.1016/j.proci.2018.06.178
  22. Burnette , L.W. , Johns , I.B. , Holdern , R.F. , and Hixon , R. Production of 2-Methylfuran by Vaporphase Hydrogenation of Furfural Industrial and Engineering Chemistry 40 4 1948
  23. Tran , L.S. , Togbe , C. , Liu , D. , Felsmann , D. et al. Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography - Part Ii: 2-Methylfuran Combust Flame 161 3 766 779 2014 10.1016/j.combustflame.2013.05.027 https://www.ncbi.nlm.nih.gov/pubmed/24518895
  24. Sy Tran , L. , Sirjean , B. , Glaude , P.A. , Fournet , R. et al. Progress in Detailed Kinetic Modeling of the Combustion of Oxygenated Components of Biofuels Energy 43 1 4 18 2012 10.1016/j.energy.2011.11.013 https://www.ncbi.nlm.nih.gov/pubmed/23700355
  25. Roman-Leshkov , Y. , Barrett , C.J. , Liu , Z.Y. , and Dumesic , J.A. Production of Dimethylfuran for Liquid Fuels from Biomass-Derived Carbohydrates Nature 447 7147 982 985 2007 10.1038/nature05923 https://www.ncbi.nlm.nih.gov/pubmed/17581580
  26. Ma , X. , Jiang , C. , Xu , H. , Ding , H. , and Shuai , S. Laminar Burning Characteristics of 2-Methylfuran and Isooctane Blend Fuels 116 281 291 2014
  27. Xu , C. , Zhong , A. , Wang , H. , Jiang , C. et al. Laminar Burning Velocity of 2-Methylfuran-Air Mixtures at Elevated Pressures and Temperatures: Experimental and Modeling Studies 231 215 223 2018
  28. Saxena , P. and Williams , F.A. Numerical and Experimental Studies of Ethanol Flames Proceedings of the Combustion Institute 31 1 1149 1156 2007 10.1016/j.proci.2006.08.097
  29. Bradley , D. , Lawes , M. , and Mansour , M.S. Explosion Bomb Measurements of Ethanol-Air Laminar Gaseous Flame Characteristics at Pressures up to 1.4MPa Combustion and Flame 156 7 1462 1470 2009 10.1016/j.combustflame.2009.02.007
  30. Almansour , B. , Alawadhi , S. , and Vasu , S. Laminar Burning Velocity Measurements in Dipk-An Advanced Biofuel SAE International Journal of Fuels and Lubricants 10 2 432 441 2017 10.4271/2017-01-0863
  31. Almansour , B. , Kim , G. , and Vasu , S. The Effect of Diluent Gases on High Pressure Laminar Burning Velocity Measurements of an Advanced Biofuel Ketone SAE International 2018
  32. Ethanol http://www.chemspider.com/Chemical-Structure.682.html 2018
  33. Methyl Acetate http://www.chemspider.com/Chemical-Structure.6335.html 2018
  34. 2-Methylfuran http://www.chemspider.com/Chemical-Structure.10340.html 2018
  35. Somers , K.P. , Simmie , J.M. , Metcalfe , W.K. , and Curran , H.J. The Pyrolysis of 2-Methylfuran: A Quantum Chemical, Statistical Rate Theory and Kinetic Modelling Study Phys Chem Chem Phys 16 11 5349 5367 2014 10.1039/c3cp54915a https://www.ncbi.nlm.nih.gov/pubmed/24496403
  36. Demirel , Y. Energy: Production, Conversion, Storage, Conservation, and Coupling Springer Science & Business Media 2012
  37. Almansour , B. , Alawadhi , S. , and Vasu , S. Laminar Burning Velocity Measurements in Dipk-An Advanced Biofuel SAE Int. J. Fuels Lubr. 10 2 432 441 2017 10.4271/2017-01-0863 https://doi.org/10.4271/2017-01-0863
  38. Almansour , B. , Thompson , L. , Lopez , J. , Barari , G. et al. Laser Ignition and Flame Speed Measurements in Oxy-Methane Mixtures Diluted with CO 2 Journal of Energy Resources Technology-Transactions of the ASME 138 3 032201 032201 2016
  39. Almansour , B. , Lopez , J. , Thompson , L. , Barari , G. et al. Ignition and Flame Propagation in Oxy-Methane Mixtures Diluted with CO 2 Proc. of the ASME Turbo Expo: GT2015-43355 2015
  40. Saeed , K. and Stone , C.R. Measurements of the Laminar Burning Velocity for Mixtures of Methanol and Air from a Constant-Volume Vessel Using a Multizone Model Combustion and Flame 139 1 152 166 2004
  41. Cantera: An Object- Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes 2016 http://www.cantera.org
  42. O'Donovan , K.H. and Rallis , C.J. A Modified Analysis for the Determination of the Burning Velocity of a Gas Mixture in a Spherical Constant Volume Combustion Vessel Combustion and Flame 3 201 214 1959
  43. Bradley , D. and Morley , C. Chapter 7 Autoignition in Spark-Ignition Engines Comprehensive Chemical Kinetics Pilling M.J. 661 760 Elsevier 1997
  44. Hill , P.G. and Hung , J. Laminar Burning Velocities of Stoichiometric Mixtures of Methane with Propane and Ethane Additives Combustion Science and Technology 60 1-3 7 30 1988
  45. Takizawa , K. , Takahashi , A. , Tokuhashi , K. et al. Burning Velocity Measurement of Fluorinated Compounds by the Spherical-Vessel Method Combustion and Flame 141 3 2005 298 307 10.1016/j.combustflame.2005.01.009
  46. Moghaddas , A. , Eisazadeh-Far , K. , and Hameed , M. Laminar Burning Speed Measurement of Premixed N-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures Combustion and Flame 159 4 1437 1443 2012 10.1016/j.combustflame.2011.12.005
  47. Rokni , E. , Moghaddas , A. , Askari , O. , and Metghalchi , H. Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures Journal of Energy Resources Technology 137 1 012204 2015
  48. Li , Y. , Zhou , C.-W. , Somers , K.P. , Zhang , K. et al. The Oxidation of 2-Butene: A High Pressure Ignition Delay, Kinetic Modeling Study and Reactivity Comparison with Isobutene and 1-Butene Proceedings of the Combustion Institute 36 1 403 411 2017 10.1016/j.proci.2016.05.052
  49. Somers , K.P. , Simmie , J.M. , Gillespie , F. , Burke , U. et al. A High Temperature and Atmospheric Pressure Experimental and Detailed Chemical Kinetic Modelling Study of 2-Methyl Furan Oxidation Proc Combust Inst 34 1 225 232 2013 10.1016/j.proci.2012.06.113

Cited By