This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Notch Plasticity and Fatigue Modelling of AZ31B-H24 Magnesium Alloy Sheet
Technical Paper
2019-01-0530
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Vehicle weight reduction through the use of components made of magnesium alloys is an effective way to reduce carbon dioxide emission and improve fuel economy. In the design of these components, which are mostly under cyclic loading, notches are inevitably present. In this study, surface strain distribution and crack initiation sites in the notch region of AZ31B-H24 magnesium alloy notched specimens under uniaxial load are measured via digital image correlation. Predicted strains from finite element analysis using Abaqus and LS-DYNA material types 124 and 233 are then compared against the experimental measurements during quasi-static and cyclic loading. It is concluded that MAT_233, when calibrated using cyclic tensile and compressive stress-strain curves, is capable of predicting strain at the notch root. Finally, employing Smith-Watson-Topper model together with MAT_233 results, fatigue lives of the notched specimens are estimated and compared with experimental results.
Recommended Content
Authors
Citation
Qian, L., Roostaei, A., Dighrasker, U., Glinka, G. et al., "Notch Plasticity and Fatigue Modelling of AZ31B-H24 Magnesium Alloy Sheet," SAE Technical Paper 2019-01-0530, 2019, https://doi.org/10.4271/2019-01-0530.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] | ||
[Unnamed Dataset 4] | ||
[Unnamed Dataset 5] | ||
[Unnamed Dataset 6] | ||
[Unnamed Dataset 7] |
Also In
References
- Friedrich, H. and Schumann, S., “Research for a “New Age of Mmagnesium” in the Automotive Industry,” Journal of Materials Processing Technology 117:276-281, 2001, doi:10.1016/S0924-0136(01)00780-4.
- Gupta, M. and Sharon, N.M.L., Magnesium, Magnesium Alloys, and Magnesium Composites (Hoboken, NJ: John Wiley & Sons Inc., 2010), doi:10.1002/9780470905098.
- Kim, S.-H., You, B.-S., Dong, Y.C., and Seo, Y.-M., “Texture and Microstructure Changes in Asymmetrically Hot Rolled AZ31 Magnesium Alloy Sheets,” Materials Letters 59:3876-3880, 2005, doi:10.1016/j.matlet.2005.07.024.
- Duygulu, O. and Agnew, S.R., “The Effect of Temperature and Strain Rate on the Tensile Properties of Textured Magnesium Alloy AZ31B Sheet,” in TMS Annual Meeting, 2003.
- Agnew, S.R. and Duygulu, Ö., “Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B,” International Journal of Plasticity 21:1161-1193, 2005, doi:10.1016/j.ijplas.2004.05.018.
- Wang, H., Wu, P.D., and Gharghouri, M.A., “Effects of Basal Texture on Mechanical Behaviour of Magnesium Alloy AZ31B Sheet,” Materials Science & Engineering: A 527:3588-3594, 2010, doi:10.1016/j.msea.2010.02.050.
- Wu, L., Agnew, S.R., Ren, Y., Brown, D.W. et al., “The Effects of Texture and Extension Twinning on the Low-Cycle Fatigue Behavior of a Rolled Magnesium Alloy, AZ31B,” Materials Science & Engineering: A 527:7057-7067, 2010, doi:10.1016/j.msea.2010.07.047.
- LS-DYNA, Keyword User’s Manual, Volume II: Material Models, n.d.
- Cazacu, O., Plunkett, B., and Barlat, F., “Orthotropic Yield Criterion for Hexagonal Closed Packed Metals,” International Journal of Plasticity 22:1171-1194, 2006, doi:10.1016/j.ijplas.2005.06.001.
- Knezevic, M., Levinson, A., Harris, R., Mishra, R.K. et al., “Deformation Twinning in AZ31: Influence on Strain Hardening and Texture Evolution,” Acta Materialia 58:6230-6242, 2010, doi:10.1016/j.actamat.2010.07.041.
- Lou, X.Y., Li, M., Boger, R.K., Agnew, S.R. et al., “Hardening Evolution of AZ31B Mg Sheet,” International Journal of Plasticity 23:44-86, 2007, doi:10.1016/j.ijplas.2006.03.005.
- Behravesh, S.B., Jahed, H., and Lambert, S., “Fatigue Characterization and Modeling of AZ31B Magnesium Alloy Spot-Welds,” International Journal of Fatigue 64:1-13, 2014, doi:10.1016/j.ijfatigue.2014.01.026.
- Behravesh, S.B., Jahed, H., Lambert, S.B., and Chengji, M., “Constitutive Modeling for Cyclic Behavior of AZ31B Magnesium Alloy and its Application,” Advanced Materials Research 891-892:809-814, 2014, doi:10.4028/www.scientific.net/AMR.891-892.809.
- Albinmousa, J. and Jahed, H., “Multiaxial Effects on LCF Behaviour and Fatigue Failure of AZ31B Magnesium Extrusion,” International Journal of Fatigue 67:103-116, 2014, doi:10.1016/j.ijfatigue.2014.01.025.
- Albinmousa, J., Jahed, H., and Lambert, S., “Cyclic Axial and Cyclic Torsional Behaviour of Extruded AZ31B Magnesium Alloy,” International Journal of Fatigue 33:1403-1416, 2011, doi:10.1016/j.ijfatigue.2011.04.012.
- Huppmann, M., Lentz, M., Chedid, S., and Reimers, W., “Analyses of Deformation Twinning in the Extruded Magnesium Alloy AZ31 after Compressive and Cyclic Loading,” Journal of Materials Science 46:938-950, 2011, doi:10.1007/s10853-010-4838-0.
- Ramberg, W. and Osgood, W.R., “Description of Stress-Strain Curves by Three Parameters,” NACA Technical Note 902, 1943.
- Coffin, L.F.J., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Transactions of the ASME 76:931-950, 1954.
- Manson, S.S., “Behavior of Materials under Conditions of Thermal Stress,” NACA Technical Note 2933, 1953.
- Smith, K.N., Watson, P., and Topper, T.H., “A Stress-Strain Function for the Fatigue of Metals,” Journal of Materials 5:768-778, 1970, doi:10.1016/j.neunet.2013.01.002.
- Stephens, R.I., Fatemi, A., Stephens, R.R., and Fuchs, H.O., Metal Fatigue in Engineering 2nd Edition (John Wiley & Sons Inc., 2001). ISBN:978-0-471-51059-8.
- Begum, S., Chen, D.L., Xu, S., and Luo, A.A., “Low Cycle Fatigue Properties of an Extruded AZ31 Magnesium Alloy,” International Journal of Fatigue 31:726-735, 2009, doi:10.1016/j.ijfatigue.2008.03.009.
- Denk, J., Dallmeier, J., Huber, O., and Saage, H., “The Fatigue Life of Notched Magnesium Sheet Metals with Emphasis on the Effect of Bands of Twinned Grains,” International Journal of Fatigue 98:212-222, 2017, doi:10.1016/j.ijfatigue.2017.01.041.
- Denk, J., Whitmore, L., Huber, O., Diwald, O. et al., “Concept of the Highly Strained Volume for Fatigue Modeling of Wrought Magnesium Alloys,” International Journal of Fatigue 117:283-291, 2018, doi:10.1016/j.ijfatigue.2018.08.025.
- Tang, T., Kim, S., and Horstemeyer, M.F., “Fatigue Crack Growth in Magnesium Single Crystals under Cyclic Loading: Molecular Dynamics Simulation,” Computational Materials Science 48:426-439, 2010, doi:10.1016/j.commatsci.2010.02.003.
- Wang, X.S., Liang, F., Fan, J.H., and Zhang, F.H., “Low-Cycle Fatigue Small Crack Initiation and Propagation Behaviour of Cast Magnesium Alloys Based on In-Situ SEM Observations,” Philosophical Magazine 86:1581-1596, 2006, doi:10.1080/14786430500401070.