This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite

Journal Article
2019-01-0521
ISSN: 2641-9637, e-ISSN: 2641-9645
Published April 02, 2019 by SAE International in United States
Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite
Sector:
Citation: Enloe, C., Savic, V., Poling, W., Hector, L. et al., "Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite," SAE Int. J. Adv. & Curr. Prac. in Mobility 1(3):1046-1055, 2019, https://doi.org/10.4271/2019-01-0521.
Language: English

References

  1. Delannay, L., Jacques, P., and Pardoen, T. , “Modelling of the Plastic Flow of TRIP-Aided Multiphase Steel Based on an Incremental Mean-Field Approach,” International Journal of Solids and Structures 45(6):1825-1843, 2008, doi:10.1016/j.ijsolstr. 2007.10.026.
  2. Curtze, S., Kuokkala, V.T., Hokka, M., and Peura, P. , “Deformation Behavior of TRIP and DP Steels in Tension at Different Temperatures over a Wide range of Strain Rates,” Materials Science and Engineering A 507(1-2):124-131, 2009, doi:10.1016/j.msea.2008.11.050.
  3. DeMoor, E., Gibbs, P.J., Speer, J.G., Matlock, D.K. et al. , “Strategies for Third-Generation Advanced High-Strength Steel Development,” AIST Transactions 7:132-146, 2010.
  4. Ustunyagiz, E. and Altan, T. , “Design of Progressive Die Sequence by Considering the Effect of Friction, Temperature and Contact Pressure,” Key Engineering Materials 767:232-239, 2018, doi:10.4028/www.scientific.net/KEM.767.232.
  5. Pereira, M.P. and Rolfe, B.F. , “Temperature Conditions during ‘Cold’ Sheet Metal Stamping,” Journal of Materials Processing Technology 214(8):1749-1758, 2014, doi:10.1016/j.jmatprotec. 2014.03.020.
  6. Wu, W., Wang, Y.-W., Makrygiannisa, P., Zhu, F. et al. , “Deformation Mode and Strain Path Dependence of Martensite Phase Transformation in a Medium Manganese TRIP Steel,” Materials Science and Engineering A 711:611-623, 2017, doi:10.1016/j.msea.2017.11.008.
  7. Zehnder, A.T. , “A Model for the Heating due to Plastic Work,” Mechanics Research Communications 18(1):23-28, 1991, doi:10.1016/0093-6413(91)90023-P.
  8. Taylor, G.I. and Quinney, M.A. , “The Latent Energy Remaining in a Metal after Cold Working,” Proceedings of the Royal Society A 143(849):307-326, 1934, doi:10.1098/rspa.1934.0004.
  9. Rusinek, A. and Klepaczko, J.R. , “Experiments on Heat Generated during Plastic Deformation and Stored Energy for TRIP Steels,” Materials and Design 30(1):35-48, 2009, doi:10.1016/j.matdes.2008.04.048.
  10. Rodriguez-Martinez, J.A., Pesci, R., and Rusinek, A. , “Experimental Study on the Martensitic Transformation in AISI 304 Steel Sheets Subjected to Tension under Wide Ranges of Strain Rate at Room Temperature,” Materials Science and Engineering A 528(18):5974-5982, 2011, doi:doi 10.1016/j.msea.2011.04.030.
  11. Zaera, R., Rodriguez-Martinez, J.A., and Rittel, D. , “On the Taylor-Quinney Coefficient in Dynamically Phase Transforming Materials. Application to 304 Stainless Steel,” International Journal of Plasticity 40:185-201, 2013, doi:10.1016/j.ijplas. 2012.08.003.
  12. Lichtenfeld, J.A., Van Tyne, C.J., and Mataya, M.C. , “Effect of Strain Rate on Stress-Strain Behavior of Alloy 309 and 304L Austenitic Stainless steel,” Metallurgical and Materials Transactions A 37(1):147-161, 2006, doi:10.1007/s11661-006-0160-5.
  13. Talonen, J., Hänninen, H., Nenonen, P., and Pape, G. , “Effect of Strain Rate on the Strain-Induced γ → α′-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels,” Metallurgical and Materials Transactions A 36(2):421-432, 2005, doi:10.1007/s11661-005-0313-y.
  14. Hecker, S.S., Stout, M.G., and Staudhammer, K.P. , “Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior,” Metallurgical and Materials Transactions A 13(4):619-626, 1982, doi:10.1007/BF02644427.
  15. Choi, I., Son, D., Kim, S., Matlock, D.K. et al. , “Strain Rate Effects on Mechanical Stability of Retained Austenite in TRIP Sheet Steels,” SAE Technical Paper 2006-01-1434 , 2006, doi:10.4271/2006-01-1434.
  16. Wiewiórowska, S. , “The Influence of Strain Rate and Strain Intensity on Retained Austenite Content in Structure of Steel with TRIP Effect,” Solid State Phenomena 165:216-220, 2010, doi:10.4028/www.scientific.net/SSP.165.216.
  17. Poling, W.A. , “Tensile Deformation of Third Generation Advanced High Strength Steels under High Strain Rates,” Ph.D. dissertation, Colorado School of Mines, Golden, CO, 2016
  18. Sugimoto, K., Hojo, T., and Kobayashi, J. , “Critical Assessment 29: TRIP-aided Bainitic Ferrite Steels,” Materials Science and Technology 33, 2017(17), 2005-2009, doi:10.1080/02670836. 2017.1356014.
  19. Sharma, S., Sangal, S., and Mondal, K. , “Development of New High-Strength Carbide-Free Bainitic Steels,” Metallurgical and Materials Transactions A 42(13):3921-3933, 2011, doi:10.1007/s11661-011-0797-6.
  20. De Cooman, B.C. , “Structure-Properties Relationship in TRIP Steels Containing Carbide-Free Bainite,” Current Opinion in Solid State and Materials Science 8(3-4):285-303, 2004, doi:10.1016/j.cossms.2004.10.002.
  21. Wang, Y., Xu, H., Erdman, D.L., Starbuck, M.J. et al. , “Characterization of High-Strain Rate Mechanical Behavior of AZ31 Magnesium Alloy Using 3D Digital Image Correlation,” Advanced Engineering Materials 13(10):943-948, 2011, doi:10.1002/adem.201100048.
  22. Yang, X., Hector, L.G. Jr., and Wang, J. , “A Combined Theoretical/Experimental Approach for Reducing Ringing Artifacts in Low Dynamic Testing with Serv-Hydraulic Load Frames,” Experimental Mechanics 54(5):775-789, 2014, doi:10.1007/s11340-014-9850-x.
  23. Choi, I.D., Kim, D.M., Kim, S.J., Bruce, D.M. et al. , “The Effect of Retained Austenite Stability on High Speed Deformation Behavior of TRIP Steels,” Metals and Materials International 12(1):13-13, 2006, doi:10.1007/BF03027517.
  24. Huh, H., Kim, S.-B., Song, J.-H., and Lim, J.-H. , “Dynamic Tensile Characteristics of TRIP-Type and DP-Type Steel Sheets for an Auto-body,” International Journal of Mechanical Sciences 50(5):918-931, 2008, doi:10.1016/j.ijmecsci.2007.09.004.
  25. Oliver, S., Jones, T.B., and Fourlaris, G. , “Dual-Phase TRIP Strip Steels: Microstructural Changes as a Consequence of Quasi-Static and Dynamic Tensile Testing,” Materials Characterization 58(4):390-400, 2007, doi:10.1016/j.matchar.2006.07.004.
  26. Alturk, R., Hector, L.G. Jr., Enloe, C.M., Abu-Farha, F. et al. , “Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel,” JOM 70(6):894-905, 2018, doi:10.1007/s11837-018-2830-3.
  27. Redlunn, B., Daly, S., Hector, L.G. Jr., Zavattieri, P.D. et al. , “Tips and Tricks for Characterizing Shape Memory Wire Part 5: Full-Field Strain Measurement by Digital Image Correlation,” Experimental Techniques 37(3):62-78, 2013, doi:10.1111/ j.1747-1567.2011.00717.x.
  28. Hu, X., Sun, X., Hector, L.G. Jr., and Ren, Y. , “Individual Phase Constitutive Properties of a TRIP-Assisted QP980 Steel from a Combined Synchrotron X-Ray Diffraction and Crystal Plasticity Approach,” Acta Materialia 132:230-244, 2017, doi:10.1016/ j.actamat.2017.04.028.
  29. Toby, B.H. and Von Dreele, R.B. , “GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package,” Journal of Applied Crystallography 46(2):544-549, 2013, doi:10.1107/S0021889813003531.
  30. Origin 86 Manual, https://www.originlab.com/2015
  31. Kim, C. , “X-Ray Method of Measuring Retained Austenite in Heat Treated White Cast Irons,” Journal of Heat Treating 1(2):43-51, 1979, doi:doi.org/10.1007/BF02833237.
  32. Abu-Farha, F., Hu, X., Sun, X., Ren, Y. et al. , “In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels,” Metallurgical and Materials Transactions A 49(7):2583-2596, 2018, doi:10.1007/s11661-018-4660-x.
  33. Poling, W.A., Findley, K.O., De Moor, E., Speer, J.G. , “Effect of Strain Rate on Tensile Deformation Behavior of a Quenched and Partitioned Steel,” in Proceedings of the International Symposium on New Developments in Advanced High-Strength Sheet Steels, Keystone, CO, 147-155, 2017.
  34. Campbell, J.D. and Ferguson, W.G. , “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Philosophical Magazine 21(169):63-82, 1970, doi:10.1080/ 14786437008238397.
  35. Bruce, D.M., Matlock, D.K., Speer, J.G., and De, A.K. , “Assessment of the Strain-Rate Dependent Tensile Properties of Automotive Sheet Steels,” SAE Technical Paper 2004-01-0507 , 2004, doi:10.4271/2004-01-0507.
  36. Larour, P., Bäumer, A., Dahmen, K., and Bleck, W. , “Influence of Strain Rate, Temperature, Plastic Strain, and Microstructure on the Strain Rate Sensitivity of Automotive Sheet Steels,” Steel Research International 84(5):426-442, 2013, doi:10.1002/ srin.201200099.
  37. Gray, G.T. III , “High-Strain-Rate Deformation: Mechanical Behavior and Deformation Substructures Induced,” Annual Review of Materials Research 42:285-303, 2012, doi:10.1146/ annurev-matsci-070511-155034.
  38. Paruz, H. and Edmonds, D.V. , “The Strain Hardening Behaviour of Dual-Phase Steel,” Materials Science and Engineering A 117:67-74, 1989, doi:10.1016/0921-5093(89)90087-7.
  39. Krauss, G. and Matlock, D.K. , “Effects of Strain Hardening and Fine Structure on Strength and Toughness of Tempered Martensite in Carbon Steels,” Journal de Physique 5(C8):51-60, 1995, doi:10.1051/jp4:1995806.
  40. Coryell, J., Savic, V., Hector, L., and Mishra, S. , “Temperature Effects on the Deformation and Fracture of a Quench-and-Partitioned Steel,” SAE Technical Paper 20013-01-0610 , 2013, doi:10.4271/2013-01-0610.

Cited By