This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

Journal Article
2019-01-0478
ISSN: 2641-9637, e-ISSN: 2641-9645
Published April 02, 2019 by SAE International in United States
Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services
Sector:
Citation: Li, H., Ma, D., Medjahed, B., Kim, Y. et al., "Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services," SAE Int. J. Adv. & Curr. Prac. in Mobility 1(3):1035-1045, 2019, https://doi.org/10.4271/2019-01-0478.
Language: English

References

  1. BLOOMBERG , “The Car of the Future Will Sell Your Data (February 2018), 2018, http://fortune.com/2018/02/20/car-future-sell-data-telenav/.
  2. Kandappu, T., Friedman, A., Sivaraman, V., and Boreli, R. , “Privacy in Crowdsourced Platforms,” . In: Privacy in a Digital, Networked World. (Cham, Springer, 2015), 57-84, doi:10.1007/978-3-319-08470-1_4.
  3. Li, H., Ma, D., Medjahed, B., Wang, Q. et al. , “Secure and Privacy-Preserving Data Collection Mechanisms for Connected Vehicles,” SAE Technical Paper 2017-01-1660 , 2017, doi:10.4271/2017-01-1660.
  4. Enev, M., Takakuwa, A., Koscher, K., and Kohno, K. , “Automobile Driver Fingerprinting,” Proceedings on Privacy Enhancing Technologies 2016(1):34-50, 2016, doi:10.1515/popets-2015-0029.
  5. Regulation, P. , “The General Data Protection Regulation. European Commission,” 2016, Available at: https://eur-lex.europa.eu/legal-content/EN/TXT.
  6. Bezzina, D. and Sayer, J. , “Safety Pilot Model Deployment: Test Conductor Team Report,” Report No. DOT HS 812, 2014, 171.
  7. Zang, H. and Bolot, J. , “Anonymization of Location Data Does Not Work: A Large-Scale Measurement Study,” in Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, 2011, 145-156, ACM, doi:10.1145/2030613.2030630.
  8. Troncoso, C., Danezis, G., Kosta, E., Balasch, J., and Preneel, B. , “Pripayd: Privacy-Friendly Pay-as-You-Drive Insurance,” IEEE Transactions on Dependable and Secure Computing 8(5):742-755, 2011, doi:10.1109/TDSC.2010.71.
  9. Chen, D., Cho, K.T., and Shin, K.G. , “Mobile IMUs Reveal Driver’s Identity From Vehicle Turns,” arXiv preprint arXiv:1710.04578, 2017.
  10. Husnjak, S., Perakovi, D., Forenbacher, I., and Mumdziev, M. , “Telematics System in Usage Based Motor Insurance,” Procedia Engineering 100:816-825, 2015, doi:10.1016/j.proeng.2015.01.436.
  11. Li, G., Lee, B.L., and Chung, W.Y. , “Smartwatch-Based Wearable EEG System for Driver Drowsiness Detection,” IEEE Sensors Journal 15(12):7169-7180, 2015, doi:10.1109/JSEN.2015.2473679.
  12. Sahayadhas, A., Sundaraj, K., and Murugappan, M. , “Detecting Driver Drowsiness Based on Sensors: A Review,” Sensors 12(12):16937-16953, 2012, doi:10.3390/s121216937.
  13. Assari, M.A. and Rahmati, M. , “Driver Drowsiness Detection Using Face Expression Recognition,” in IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2011, 337-341, IEEE, doi:10.1109/ICSIPA.2011.6144162.
  14. Händel, P., Ohlsson, J., Ohlsson, M., Skog, I., and Nygren, E. , “Smartphone-Based Measurement Systems for Road Vehicle Traffic Monitoring and Usage-Based Insurance,” IEEE Systems Journal 8(4):1238-1248, 2014, doi:10.1109/JSYST.2013.2292721.
  15. Gao, X., Firner, B., Sugrim, S., Kaiser-Pendergrast, V., Yang, Y. and Lindqvist, J. , “Elastic Pathing: Your Speed Is Enough to Track You,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2014, 975-986, ACM, doi:10.1145/2632048.2632077.
  16. Narain, S., Vo-Huu, T.D., Block, K. and Noubir, G. , “Inferring User Routes and Locations Using Zero-Permission Mobile Sensors,” in Security and Privacy (SP), 2016 IEEE Symposium on, 2016, 397-413, IEEE, doi:10.1109/SP.2016.31.
  17. Zhou, L., Chen, Q., Luo, Z., Zhu, H. and Chen, C. , “Speed-Based Location Tracking in Usage-Based Automotive Insurance,” in Distributed Computing Systems (ICDCS), 2017 IEEE 37th International Conference on, 2017, 2252-2257, IEEE, doi:10.1109/ICDCS.2017.278.
  18. Li, H., Zhu, H., Du, S., Liang, X., and Shen, X. , “Privacy Leakage of Location Sharing in Mobile Social Networks: Attacks and Defense,” IEEE Transactions on Dependable and Secure Computing 15(4):646-660, 2018, doi:10.1109/TDSC.2016.2604383.
  19. Krumm, J. , “Inference Attacks on Location Tracks,” . In: International Conference on Pervasive Computing. (Berlin, Heidelberg, Springer, 2007), 127-143, doi:10.1007/978-3-540-72037-9_8.
  20. Dwork, C. , “Differential Privacy: A Survey of Results,” . In: International Conference on Theory and Applications of Models of Computation. (Berlin, Heidelberg, Springer, 2008), 1-19, doi:10.1007/978-3-540-79228-4_1.
  21. Das, A., Borisov, N., and Caesar, M. , “Tracking Mobile Web Users Through Motion Sensors: Attacks and Defenses,” in NDSS, 2016, doi:10.14722/ndss.2016.23390.
  22. Guyon, I. and Elisseeff, A. , “An Introduction to Variable and Feature Selection,” Journal of Machine Learning Research 3(March):1157-1182, 2003.
  23. Jerome, J. , “The Connected Car and Privacy Navigating New Data Issues,” in The Future of Privacy Forum, 2014.
  24. Hoh, B., Gruteser, M., Xiong, H., and Alrabady, A. , “Enhancing Security and Privacy in Traffic-Monitoring Systems,” IEEE Pervasive Computing 5(4):38-46, 2006, doi:10.1109/MPRV.2006.69.
  25. Lin, X., Zhou, L., Chen, P., and Gu, J. , “Privacy Preserving Reverse Nearest-Neighbor Queries Processing on Road Network,” . In: International Conference on Web-Age Information Management. (Berlin, Heidelberg, Springer, 2012), 19-28, doi:10.1007/978-3-642-33050-6_3.

Cited By