This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
A Tabulated-Chemistry Approach Applied to a Quasi-Dimensional Combustion Model for a Fast and Accurate Knock Prediction in Spark-Ignition Engines
Technical Paper
2019-01-0471
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The description of knock phenomenon is a critical issue in a combustion model for Spark-Ignition (SI) engines. The most known theory to explain this phenomenon is based on the Auto-Ignition (AI) of the end-gas, ahead the flame front. The accurate description of this process requires the handling of various aspects, such as the impact of the fuel composition, the presence of residual gas or water in the burning mixture, the influence of cool flame heat release, etc. This concern can be faced by the solution of proper chemistry schemes for gasoline blends. Whichever is the modeling environment, either 3D or 0D, the on-line solution of a chemical kinetic scheme drastically affects the computational time.
In this paper, a procedure for an accurate and fast prediction of the hydrocarbons auto-ignition, applied to phenomenological SI engine combustion models, is proposed. It is based on a tabulated approach, operated on both ignition delay times and reaction rates. This technique, widely used in 3D calculations, is extended to 0D models to overcome the inaccuracies typical of the most common ignition delay approaches, based on the Livengood-Wu integral solution.
The aim is to combine the predictability of a detailed chemistry with an acceptable computational effort. First, the tabulated technique is verified through comparisons with a chemical solver for a semi-detailed kinetic scheme in constant-pressure and constant-volume configurations. Then a phenomenological model, based on the end-gas AI computation, is utilized to predict the knock occurrence in different SI engines, including both naturally-aspirated and turbocharged architectures. 0D/1D simulations are performed both with an online solution of the chemistry and employing the tabulated approach. Assessment with reference KLSA values shows that the knock model, based on the tabulated chemistry, is able to well reproduce the essential features of the auto-ignition process in the analyzed engines, with a limited impact on the computational time.
Recommended Content
Technical Paper | Kinetic Modeling of Knock Properties in Internal Combustion Engines |
Technical Paper | An Empirical SI Combustion Model Using Laminar Burning Velocity Correlations |
Authors
Topic
Citation
Bozza, F., De Bellis, V., and Teodosio, L., "A Tabulated-Chemistry Approach Applied to a Quasi-Dimensional Combustion Model for a Fast and Accurate Knock Prediction in Spark-Ignition Engines," SAE Technical Paper 2019-01-0471, 2019, https://doi.org/10.4271/2019-01-0471.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Zhen , X. , Wang , Y. , Xu , S. , Zhu , Y. et al. The Engine Knock Analysis - An Overview Applied Energy 92 628 636 2012 10.1016/j.apenergy.2011.11.079
- Kalghaltgi , G. Knock Onset, Knock Intensity, Superknock and Preignition in Spark Ignition Engines International J. of Engines Research 19 1 7 20 2018 10.1177/1468087417736430
- Wei , H. , Zhu , T. , Shu , G. , Tan , L. , and Wang , Y. Gasoline Engine Exhaust Recirculation - A Review Applied Energy 99 534 544 2012 10.1016/j.apenergy.2012.05.011
- Hoppe , F. , Thewes , M. , Baumgarten , H. , and Dohmen , J. Water Injection for Gasoline Engines: Potentials, Challenges, and Solutions International J. of Engine Research 17 1 86 96 2016 10.1177/1468087415599867
- Bozza , F. , De Bellis , V. , Giannattasio , P. , Teodosio , L. , and Marchitto , L. Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and over a WLTP Driving Cycle SAE Int. J. Engines 10 4 2141 2153 2017 doi : 10.4271/2017-24-0014
- Lu , T. and Law , C. Toward Accommodating Realistic Fuel Chemistry in Large Scale Computations Progress in Energy and Combustion Science 35 2 195 215 2009 10.1016/j.pecs.2008.10.002
- Livengood , J.C. and Wu , P.C. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines Symposium (International) on Combustion 5 1 347 356 1955
- Knop , V. , Michel , J. , and Colin , O. On the Use of a Tabulation Approach to Model Auto-Ignition During Flame Propagation in SI Engines Applied Energy 88 4968 4979 2011 10.1016/j.apenergy.2011.06.047
- Colin , O. , Pires da Cruz , A. , and Jay , S. Detailed Chemistry-Based Auto-Ignition Model Including Low Temperature Phenomena Applied to 3D Engine Calculations Proceeding of the Combustion Institute 30 2649 2656 2005 10.1016/j.proci.2004.08.058
- Breda , S. , D’Adamo , A. , Fontanesi , S. , Giovannoni , N. et al. CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine SAE Int. J. Engines 9 1 2016 10.4271/2016-01-0601
- D’Adamo , A. , Breda , S. , Fontanesi , S. , and Cantore , G. A RANS-Based CFD Model to Predict the Statistical Occurrence of Knock in Spark-Ignition Engines SAE Int. J. Engines 9 1 2016 10.4271/2016-01-0581
- Lafossas , F. , Castagne , M. , Dumas , J. , and Henriot , S. Development and Validation of a Knock Model in Spark Ignition Engines Using a CFD Code SAE Technical Paper 2002-01-2701 2002 10.4271/2002-01-2701
- Lecocq , G. , Richard , S. , Michel , J.-B. , and Vervisch , L. A New LES Model Coupling Flame Surface Density and Tabulated Kinetics Approaches to Investigate Knock and Pre-Ignition in Piston Engines Proceeding of the Combustion Institute 33 3105 3134 2011 10.1016/j.proci.2010.07.022
- Ren , Z. , Liu , Y. , Lu , T. , Lu , L. et al. The Use of Dynamic Adaptive Chemistry and Tabulation in Reactive Flow Simulations Combustion and Flame 161 127 137 2014 10.1016/j.combustflame.2013.08.018
- Martz , J. , Kwak , H. , Im , H. , Lavoie , G. , and Assanis , D. Combustion Regime of a Reacting Front Propagating into an Auto-Igniting Mixture Proceedings of the Combustion Institute 33 2 3001 3006 2011 10.1016/j.proci.2010.07.040
- Martz , J. , Lavoie , G. , Im , H. , Middleton , R. et al. The Propagation of a Laminar Reaction Front during End-Gas Auto-Ignition Combustion and Flame 159 6 2077 2086 2012 10.1016/j.combustflame.2012.01.011
- Bozza , F. , De Bellis , V. , Tufano , D. , Malfi , E. et al. A Quasi-Dimensional Model of Pre-Chamber Spark-Ignition Engines SAE Technical Paper 2019-01-0470 2019 10.4271/2019-01-0470
- Mehl , M. , Pitz , W. , Westbrook , C. , and Curran , H. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions Proceeding of the Combustion Institute 33 193 200 2011 10.1016/j.proci.2010.05.027
- Andrae , J. Development of a Detailed Kinetic Model for Gasoline Surrogate Fuels Fuel 87 2013 2022 2008 10.1016/j.fuel.2007.09.010
- Andrae , J. Kinetic Modeling of the Influence of NO on the Combustion Phasing of Gasoline Surrogate Fuels in an HCCI Engine Energy & Fuels 27 7098 7107 2013 10.1021/ef401666c
- Andrae , J. and Kovàcs , T. Evaluation of Adding an Olefin to Mixtures of Primary Reference Fuels and Toluene To Model the Oxidation of a Fully Blended Gasoline Energy & Fuels 30 7721 7730 2016 10.1021/acs.energyfuels.6b01193
- Cai , L. and Pitsch , H. Optimized Chemical Mechanism for Combustion of Gasoline Surrogate Fuels Combustion and Flame 162 1623 1637 2015 10.1016/j.combustflame.2014.11.018
- Liu , Y.-D. , Jia , M. , Xie , M. , and Pang , B. Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel with Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation Energy & Fuels 27 4899 4909 2013 10.1021/ef4009955
- Hu , H. and Keck , J. Autoignition of Adiabatically Compressed Combustible Gas Mixtures SAE Technical Paper 872110 1987 10.4271/872110
- Keck , J. and Hu , H. Explosions of Adiabatically Compressed Gases in a Constant Volume Bomb Int. Symposium on Combustion, The Combustion Institute 21 1 521 529 1988
- Pasternak , M. , Netzer , C. , Mauss , F. , Fisher , M. , Sens , M. , Riess , M. Simulation of the Effects of Spark Timing and External EGR on Gasoline Combustion Under Knock-Limited Operation at High Speed and Load International Conference on Knocking in Gasoline Engines 2018 10.1007/978-3-319-69760-4_8
- Andrae , J. 2018
- Pera , C. , Colin , O. , and Jay , S. Development of a FPI Detailed Chemistry Tabulation Methodology for Internal Combustion Engines Oil & Gas Science and Technology 64 3 243 258 2009 10.2516/ogst/2009002
- Jay , S. and Colin , O. A Variable Volume Approach of Tabulated Detailed Chemistry and Its Applications to Multidimensional Engine Simulations Proceeding of the Combustion Institute 33 3065 3072 2011 10.1016/j.proci.2010.08.003
- Tudorache , D. 2013
- Bo , T. , Mauss , F. , and Beck , L. Detailed Chemistry CFD Engine Combustion Solution with Ignition Progress Variable Library Approach SAE Technical Paper 2009-01-1898 2009 10.4271/2009-01-1898
- De Bellis , V. , Bozza , F. , Teodosio , L. , and Valentino , G. Experimental and Numerical Study of the Water Injection to Improve the Fuel Economy of a Small Size Turbocharged SI Engine SAE Int. J. Engines 10 2 550 561 2017 10.4271/2017-01-0540
- De Bellis , V. , Bozza , F. , and Tufano , D. A Comparison Between Two Phenomenological Combustion Models Applied to Different SI Engines SAE Technical Paper 2017-01-2184 2017 10.4271/2017-01-2184
- North , G. and Santavicca , D. The fractal nature of premixed turbulent flames Combustion Science and Technology 72 4-6 215 232 1990 10.1080/00102209008951648
- Gatowsky , J. and Heywood , J. Flame Photographs in a Spark-Ignition Engine Combustion and Flame 56 71 81 1984 10.1016/0010-2180(84)90006-3
- De Bellis , V. , Bozza , F. , Fontanesi , S. , Severi , E. et al. Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine SAE Int. J. Engines 9 1 506 519 2016 10.4271/2016-01-0545
- Bozza , F. , Teodosio , L. , De Bellis , V. , Fontanesi , S. et al. Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part II: Model Concept, Validation and Discussion SAE Technical Paper 2018-01-0856 2018 10.4271/2018-01-0856
- Bozza , F. , De Bellis , V. , Minarelli , F. , and Cacciatore , D. Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 2: 1D Combustion and Knock Modeling SAE Int. J. Engines 8 5 2015 10.4271/2015-24-2393
- De Bellis , V. , Teodosio , L. , Siano , D. , Minarelli , F. et al. Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 1: Experimental Data and Correlations Assessment SAE Int. J. Engines 8 5 2015 10.4271/2015-24-2392