This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Real-Time Modeling of a 48V P0 Mild Hybrid Vehicle with Electric Compressor for Model Predictive Control
Technical Paper
2019-01-0350
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
In order to reduce pollutant and CO2 emissions and fulfill future legislative requirements, powertrain electrification is one of the key technologies. In this context, especially 48V technologies offer an attractive cost to CO2 reduction ratio. 48V mild hybrid powertrains greatly benefit from additional electric intake air compression (E-Charging) and direct torque assist by an electric machine (E-Boosting). Both systems significantly improve the transient engine behavior while reducing the low end torque drawbacks of extreme downsizing and downspeeding.
Since E-Charging and E-Boosting have different characteristics concerning transient torque response and energy efficiency, application of model predictive control (MPC) is a particularly suitable method to improve the operating strategy of these functions. MPC requires fast running real-time capable models that are challenging to develop for systems with pronounced nonlinearities. Hence, the focus of this study is on the process modeling of a 48V mild hybrid system with an electric compressor for applying model predictive control algorithms.
Firstly, the problem is formulated by investigation of real world measurements of a 48V mild hybrid demonstrator vehicle with the target powertrain configuration. Thereto, full load accelerations with a rule based and performance oriented implementation of E-Charging and E-Boosting are analyzed. The time response behavior of optimization relevant parameters such as output torque and corresponding energy consumption is identified. Secondly, a detailed co-simulation of a 48V powertrain with a turbocharged gasoline engine, a belt-driven starter generator and an electric compressor is set up. The component models are parameterized by experimental data. Thirdly, this co-simulation plant model is used to analyze various real-time process models, which are designed for MPC purposes. Starting from a semi physical process model containing the nonlinear system dynamics, simplifications for several model parameters are considered to reduce complexity. Finally, a linearization of the nonlinear process model is assessed concerning its applicability in a MPC.
Recommended Content
Authors
Citation
Griefnow, P., Andert, J., Xia, F., Klein, S. et al., "Real-Time Modeling of a 48V P0 Mild Hybrid Vehicle with Electric Compressor for Model Predictive Control," SAE Technical Paper 2019-01-0350, 2019, https://doi.org/10.4271/2019-01-0350.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] |
Also In
References
- German, J., “Hybrid Vehicles: Trends in Technology Development and Cost Reduction,” in International Council on Clean Transportation (ICCT) Technical Brief No. 1, July 2015.
- Isenstadt, A. and German, J., “Diesel Engines,” in International Council on Clean Transportation (ICCT) Working Paper 2017-08, July 2017.
- Schoppe, D., Knorr, T., Graf, F., Klingseis, B. et al., “Downsized Gasoline Engine and 48 V Eco Drive - An Integrated Approach to Improve the Overall Propulsion System Efficiency,” in 35th International Vienna Motor Symposium 2014, Vienna, Austria, in Fortschritt-Berichte VDI Reihe 12, 777, 393-419, VDI Verlag, Düsseldorf, 2014, ISBN 9783183777129.
- Mahr, B., “48 Volt Technology - More than a Mild Hybrid,” Bargende M., Reuss HC., Wiedemann J., in 16. Internationales Stuttgarter Symposium, Proceedings, Springer, Wiesbaden, 2016, doi:10.1007/978-3-658-13255-2_81.
- Hakvoort, H. and Olbrich, T., “Series Application of a 48-V Hybrid Drive,” Motortechnische Zeitschrift (MTZ) Worldwide 78(Supplement 9):28-37, 2017, doi:10.1007/s35146-017-0087-y.
- Bassett, M., Hall, J., Cains, T., Underwood, M. et al., “Dynamic Downsizing Gasoline Demonstrator,” SAE Int. J. Engines 10(3):884-891, 2017, doi:10.4271/2017-01-0646.
- Romanato, R., Acquaviva, F., Duma, F., Fuso, R. et al., “48 V Hybrid System Technologies to Develop the Most Efficient and Cleanest Diesel,” SAE Technical Paper 2018-37-0011, 2018, doi:10.4271/2018-37-0011.
- Uhlmann, T., Baumgarten, H., Franzke, B., et al., “Extreme Downsizing for Gasoline Engines - Fun to Drive with Extremely Low Emissions,” in Internationaler Motorenkongress 2016, Proceedings, Baden-Baden, Germany, 2016, Wiesbaden, Germany, Springer Vieweg, 91-107, ISBN 978-3-658-12918-7.
- Forissier, M., Zechmair, D., Weber, O., et al., “The Electric Supercharger - Improved Transient Behavior and Reduced CO2 as Well as NOx Emissions at the Same Time?,” in 34th International Vienna Motor Symposium 2013, Vienna, Austria, in Fortschritt-Berichte VDI Reihe 12, 764, 1-20, VDI Verlag, Düsseldorf, 2013, ISBN:9783183764129.
- Bassett, M., Hall, J., Hibberd, B., Borman, S. et al., “Heavily Downsized Gasoline Demonstrator,” SAE Int. J. Engines 9(2):729-738, 2016, doi:10.4271/2016-01-0663.
- Richards, B., Hiep, T.-H., Porter, O., Parett, M. et al., “A 110 kW/L, 200 Nm/L Downsized Gasoline Engine with a High-Speed, Permanent Magnet Electric Supercharger,” in 4th International Conference on Energy Efficient Vehicles, Stuttgart, Germany, June 2015.
- Breitbach, H., Metz, D., Weiske, S., and Spinner, G., “Application and Design of the Electrically Driven Compressor from BorgWarner,” Motorentechnische Zeitschrift (MTZ) Worldwide 10:16-21, 2015, doi:10.1007/s38313-015-0042-6.
- Schaub, J., Griefnow, P., Holderbaum, B., Frenken, C., and Bastian, “48-V-Mild-Hybrid-Konzept für Pkw-Dieselmotoren,” Automobiltechnische Zeitschrift (ATZ) Extra 22(Supplement 1):22-27, April 2017, doi:10.1007/s35778-017-0007-2.
- Atzler, F., Wegerer, M., Mehne, F., Rohrer, S. et al., “Fuel Consumption and Emissions Effects in Passenger Car Diesel Engines through the Use of a Belt Starter Generator,” SAE Technical Paper 2015-01-1162, 2015, doi:10.4271/2015-01-1162.
- Martin, S., Beidl, C., Münz, M., and Müller, R., “Potenziale elektrischer Zusatzaufladung mit neuen Regelungskonzepten,” in Internationaler Motorenkongress 2014, Proceedings, Baden-Baden, Germany, 2014, Wiesbaden, Germany, Springer Vieweg, 207-227, ISBN:978-3-658-05015-3.
- Mohon, S., Van Maanen, K., Liu, X., Keller, P. et al., “Development of a 48 V P0 Demonstration Vehicle with eBooster® Air Charging,” SAE Technical Paper 2018-01-0418, 2018, doi:10.4271/2018-01-0418.
- Griefnow, P., Andert, J, Engels, M., Hülshorst, T. et al., “Advanced Powertrain Functions and Predictive Operating Strategies for 48 V Mild Hybrid Vehicles,” in 27th Aachen Colloquium Automobile and Engine Technology 2018, Aachen, Germany, in Aachen Colloquium, Proceedings, Aachen, 1669-1694, ISBN:978-3-00-057468-9.
- Lüpkes, K., Pillas, J., Pätzold, R., Kirschbaum, F., et al., “Fahrleistungsoptimale Ansteuerung einer elektrischen Maschine und eines elektrischen Verdichters auf 48 V Spannungslage,” in Electric & Electronic Systems in Hybrid and Electric Vehicles and Electrical Energy Management (EEHE) Conference, Bamberg, Germany, June 2017.
- Jun, Y., Jeon, B., and Youn, W., “Equivalent Consumption Minimization Strategy for Mild Hybrid Electric Vehicles with a Belt Driven Motor,” SAE Technical Paper 2017-01-1177, 2017, doi:10.4271/2017-01-1177.
- Wüst, M., Krüger, M., Naber, D., Cross, L., et al., “Operating Strategy for Optimized CO2 and NOx Emissions of Diesel-Engine Mild-Hybrid Vehicles,” Bargende, M., Reuss, HC., Wiedemann, J., in 15. Internationales Stuttgarter Symposium, Proceedings, Springer Vieweg, Wiesbaden, Germany, 2015, 93-111, doi:10.1007/978-3-658-08844-6_7.
- Zhao, D., Winward, E., Yang, Z., Stobart, R. et al., “An Integrated Framework on Characterization, Control, and Testing of an Electrical Turbocharger Assist,” IEEE Transactions on Industrial Electronics 65(6):4897-4908, 2018, doi:10.1109/TIE.2017.2774726.
- Gindele, J., Ramsteiner, T., Fischer, J. et al., “Der neue 2,0-l-Hochleistungs-Vierzylindermotor von Mercedes-AMG,” MTZ 74:664-671, 2013, doi:10.1007/s35146-013-0199-y.
- Savelsberg, R., Griefnow, P., Birmes, G., et al., "Advanced Powertrain Functions of 48 V Hybrid Vehicles - Efficient Powertrain Does Not Exclude Driving Pleasure,” in International VDI Congress Dritev - Drivetrain for Vehicles, Bonn, Germany, June 2018.
- Stapelbroek, M., Birmes, G., Holderbaum, B., et al., "Fuel Consumption Reduction and Performance Improvement by Electric Driven Supercharger,” in 25th Aachen Colloquium Automobile and Engine Technology 2016, Proceedings, Aachen, Germany, October 2016.
- Schaub, J., Griefnow, P., Coppin, O., et al., "ECObrid - 48 V Mild Hybrid Concept for Passenger Car Diesel Engines,” in Internationaler Motorenkongress 2017, Proceedings, Baden-Baden, Germany, 2017, Wiesbaden, Germany: Springer Vieweg, 245-265, ISBN:978-3-658-17108-7.
- ACOSAR Consortium, “Advance Co-Simulation Open System Architecture,” www.acosar.eu, 2017.
- Klein, S., Savelsberg, R., Xia, F., Guse, D. et al., “Engine in the Loop: Closed Loop Test Bench Control with Real-Time Simulation,” SAE Int. J. Commer. Veh. 10(1):95-105, 2017, doi:10.4271/2017-01-0219.
- Klein, S., Griefnow, P., Guse, D., Xia, F. et al., “Virtual 48V Mild Hybridization: Efficient Validation by Engine-In-The-Loop,” SAE Technical Paper 2018-01-0410, 2018, doi:10.4271/2018-01-0410.
- Griefnow, P., Andert, J., and Jolovic, D., “Next-Generation Low-Voltage Power Nets Impacts of Advanced Stop/Start and Sailing Functionalities,” SAE Int. J. Fuels Lubr 10(2), 2017, doi:10.4271/2017-01-0896.
- Fischer, M., Ostermann, B., and Lang, P., “Performance Testing: An Important Part of Development of 48V Boost-Recuperation Machine,” in Electric & Electronic Systems in Hybrid and Electric Vehicles and Electrical Energy Management (EEHE) Conference, Würzburg, Germany, June 2018.
- Griefnow, P., Klein, S., and Andert, J., “Power-Net-In-The-Loop - Closed Loop Power Net Testing,” in 18th International Congress Electronics in Vehicles (ELIV) 2017, Bonn, Germany, Oct. 2017.
- Andert, J., Xia, F., Klein, S. et al., “Road-To-Rig-To-Desktop: Virtual Development Using Real-Time Engine Modelling and Powertrain Co-Simulation,” International Journal of Engine Research 10, 2018, doi:10.1177/1468087418767221.
- Ra, Y. and Reitz, R.D., “A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations with Primary Reference Fuels, Combustion and Flame,” Combustion and Flame 155(4):713-738, 2008, doi:10.1016/j.combustflame.2008.05.002.
- Van Basshuysen, R. and Schäfer, F., “Handbuch Verbrennungsmotor - Grundlagen, Komponenten, Systeme,” ATZ/MTZ-Fachbuch, Springer Vieweg, Wiesbaden, Germany, 2017, 607ff, doi:10.1007/978-3-658-10902-8.
- Moulin, P., Chauvin, J., and Youssef, B., “Modelling and Control of the Air System of a Turbocharged Gasoline Engine,” in 17th International Federation of Automatic Control (IFAC) World Congress, July 2008, Proceedings, 41, 2, 2008, 8487-8494, doi:10.3182/20080706-5-KR-1001.01435.
- Moraal, P. and Kolmanovsky, I., “Turbocharger Modeling for Automotive Control Applications,” SAE Technical Paper 1999-01-0908, 1999, doi:10.4271/1999-01-0908.
- Albin, T., Ritter, D., Abel, D., Liberda, N., Quirynen, R., and Diehl, M., “Nonlinear MPC for a Two-Stage Turbocharged Gasoline Engine Airpath,” in Proceedings 54th IEEE Conf. Decision Control (CDC), Dec. 2015, 849-856, doi:10.1109/CDC.2015.7402335.
- Eriksson, L., “Modeling and Control of Turbocharged SI and DI Engines,” Oil & Gas Science and Technology - Rev. IFP 62(4):523-538, 2007, doi:10.2516/ogst:2007042.
- Serrano, J.R., Arnau, F.J., Andrés, T., and Samala, V., “Experimental Procedure for the Characterization of Turbocharger’s Waste-Gate Discharge Coefficient,” Advances in Mechanical Engineering 9(10):1-9, 2017, doi:10.1177/1687814017728242.
- Lino Guzzella, L. and Onder, C.H., Introduction to Modeling and Control of Internal Combustion Engine Systems (Berlin Heidelberg, Germany: Springer Vieweg, 2010), doi:10.1007/978-3-642-10775-7.
- Breuer, S. and Rohrbach-Kerl, A., “Fahrzeugdynamik - Mechanik des bewegten Fahrzeugs,” . In: ATZ/MTZ-Fachbuch. (Wiesbaden, Germany, Springer Vieweg, 2015), doi:10.1007/978-3-658-09475-1.
- Ellman, A. and Piché, R., “A Two Regime Orifice Flow Formula for Numerical Simulation,” ASME. J. Dyn. Sys., Meas., Control 121(4):721-724, 1999, doi:10.1115/1.2802541.
- Chen, S. and Flynn, P., “Development of a Single Cylinder Compression Ignition Research Engine,” SAE Technical Paper 650733, 1965, doi:10.4271/650733.
- Pipitone, E., “A New Simple Friction Model for S. I. Engine,” SAE Technical Paper 2009-01-1984, 2009, doi:10.4271/2009-01-1984.