This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
A Study on Kinetic Mechanisms of Diesel Fuel Surrogate n-Dodecane for the Simulation of Combustion Recession
Technical Paper
2019-01-0202
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Combustion recession, an end of injection (EOI) diesel spray phenomenon, has been found to be a robust correlation parameter for UHC in diesel LTC strategies. Previous studies have shown that the likelihood of capturing combustion recession in numerical simulations is highly dependent on the details of the low-temperature chemistry reaction mechanisms employed. This study aims to further the understanding of the effects of different chemical mechanisms in the prediction of a reactive diesel spray and its EOI process: combustion recession. Studies were performed under the Engine Combustion Network’s (ECN) “Spray A” conditions using the Reynolds-Averaged Navier-Stokes simulation (RANS) and the Flamelet Generated Manifold (FGM) combustion model with four different chemical mechanisms for n-dodecane that are commonly used in the engine simulation communities - including recently developed reduced chemistry mechanisms. The flamelet database for each of the chemical mechanism is generated using two methods: 0D homogeneous reactor (HR) ignition flamelets and 1D igniting counterflow diffusion (ICDF) flamelets. The effect of different tabulation approaches is investigated first following by the discussion of the impact of chemical mechanisms on the prediction of combustion recession. Further discussions include an evaluation of the performance of chemical mechanisms in predicting the most relevant reacting spray characteristics compared to the ECN experimental database: ignition delay time (IDT), flame lift-off length (LOL) and flame reactive region. Results show that the choice of both tabulation method and chemical mechanism play a significant role in initial flame stabilization and end of injection (EOI) transient processes. In general, both tabulation techniques were able to qualitatively capture the flame characteristics before EOI, however ICDF tabulation is better suited for the FGM approach in order to capture combustion recession. Furthermore, the chemical mechanisms studied indicate that mechanisms with stronger low temperature chemistry predictions are more likely to promote combustion recession under an FGM framework.
Authors
Citation
Fang, X., Ismail, R., and Davy, M., "A Study on Kinetic Mechanisms of Diesel Fuel Surrogate n-Dodecane for the Simulation of Combustion Recession," SAE Technical Paper 2019-01-0202, 2019, https://doi.org/10.4271/2019-01-0202.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 |
Also In
References
- Converge CFD Manual
- Knox , B. , Genzale , C. , Pickett , L. , Garcia-Oliver , J. et al. Combustion Recession after End of Injection in Diesel Sprays SAE Int. J. Engines 8 2 679 695 2015
- Bekdemir , C. , Rijk , E. , Somers , L. , Goey , P. , and Albrecht , B. On the Application of the Flamelet Generated Manifold (FGM) Approach to the Simulation of an Igniting Diesel Spray SAE Technical Papers, 2010-01-0358 2010 10.4271/2010-01-0358
- Bilger , R. , Starner , S. , and Kee , R. On Reduced Mechanisms for Methane Air Combustion in Nonpremixed Flames Combustion and Flame 80 2 135 149 1990
- Blomberg , C. , Zeugin , L. , Pandurangi , S. , Bolla , M. et al. Modeling Split Injections of ECN Spray a Using a Conditional Moment Closure Combustion Model with RANS and LES SAE Int. J. Engines 9 4 2016
- Bobba , M.K. , Genzale , C.L. , and Musculus , M.P.B. Effect of Ignition Delay on In-Cylinder Soot Characteristics of a Heavy Duty Diesel Engine Operating at Low Temperature Conditions SAE Int. J. Engines 2 911 924 2009
- Cai , L. , Kroger , L. , and Pitsch , H. Reduced and Optimized Mechanism for N-Dodecane Oxidation 15th International Conference on Numerical Combustion 2015
- One-Dimensional Laminar Flame Code http://www.combustion.tue.nl/chem1d
- Desantes , J.M. , Lopez , J.J. , Garcia-Oliver , J.M. , and Lopez-Pintor , D. Experimental Validation and Analysis of Seven Different Chemical Kinetic Mechanisms for N-Dodecane Using a Rapid Compression-Expansion Machine Combustion and Flame 182 76 89 2017
- Egüz , U. , Ayyapureddi , S. , Bekdemir , C. , Somers B. , and de Goey , P. Modeling Fuel Spray Auto-Ignition Using the Fgm Approach: Effect of Tabulation Method SAE 2012 World Congress Exhibition, SAE International Apr. 2012
- Egüz , U. , Ayyapureddi , S. , Bekdemir , C. , Somers , B. , and de Goey , P. Manifold Resolution Study of the FGM Method for an Igniting Diesel Spray Fuel 113 228 238 2013
- Fang , X. , Ismail , R. , Davy , M.H. , and Camm , J. Numerical Studies of Combustion Recession on ECN Diesel Spray a ASME. Internal Combustion Engine Division Fall Technical Conference 2018 9597
- Hasegawa , R. and Yanagihara , H. HCCI Combustion in DI Diesel Engine SAE Technical Paper 2003-01-0745 2003 10.4271/2003-01-0745
- Jarrahbashi , D. , Kim , S. , and Genzale , C. Simulation of Combustion Recession after End-of-Injection at Diesel Engine Conditions Journal of Engineering for Gas Turbines and Power 139 03 2017
- Jarrahbashi , D. , Kim , S. , Knox , B.W. , and Genzale , C.L. Computational Analysis of End-of-Injection Transients and Combustion Recession International Journal of Engine Research 0 0 1468087417701280
- Kimura , S. , Aoki , O. , Ogawa , H. , Muranaka , S. , and Enomoto , Y. New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines SAE Technical Paper 1999-01-3681 1999 10.4271/1999-01-3681
- Kim , S. , Jarrahbashi , D. , and Genzale , C. The Role of Turbulent-Chemistry Interaction in Simulating End-of-Injection Combustion Transients in Diesel Sprays SAE Technical Paper 2017-01-0838 2017 10.4271/2017-01-0838
- Knox , B.W. and Genzale , C.L. Scaling Combustion Recession after End of Injection in Diesel Sprays Combustion and Flame 177 Supplement C 24 36 2017
- Kundu , P. , Ameen , M.M. , and Som , S. Importance of Turbulence-Chemistry Interactions at Low Temperature Engine Conditions Combustion and Flame 183 283 298 2017
- Leach , F. , Ismail , R. , and Davy , M. Engine-Out Emissions from a Modern High Speed Diesel Engine: The Importance of Nozzle Tip Protrusion Applied Energy 226 340 352 2018
- Luo , Z. , Som , S. , Sarathy , S.M. , Plomer , M. et al. Development and Validation of an N-Dodecane Skeletal Mechanism for Spray Combustion Applications Combustion Theory and Modelling 18 2 187 203 2014
- Nicholson , L. , Fang , X. , Camm , J. , Davy , M. , and Richardson , D. Comparison of Transient Diesel Spray Break-Up between Two Computational Fluid Dynamics Codes SAE Technical Paper 2018-01-0307 2018 10.4271/2018-01-0307
- Oijen , J.V. and Goey , L.D. Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds Combustion Science and Technology 161 1 113 137 2000
- Papaioannou , N. , Leach , F.C. , Davy , M.H. , Weall , A. , and Cooper , B. Evaluation of Exhaust Gas Recirculation Techniques on a High-Speed Direct Injection Diesel Engine Using First Law Analysis Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 0 0 0954407017749110
- Pei , Y. , Som , S. , Pomraning , E. , Senecal , P.K. et al. Large Eddy Simulation of a Reacting Spray Flame with Multiple Realizations under Compression Ignition Engine Conditions Combustion and Flame 162 12 4442 4455 2015
- Ranzi , E. , Frassoldati , A. , Stagni , A. , Pelucchi , M. et al. Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels International Journal of Chemical Kinetics 46 9 512 542 2014
- Ranzi , E. , Frassoldati , A. , Stagni , A. , Pelucchi , M. et al. Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels International Journal of Chemical Kinetics 46 9 512 542
- Skeen , S.A. , Manin , J. , and Pickett , L.M. Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Ignition Visualization in High-Pressure Spray Flames Proceedings of the Combustion Institute 35 3 3167 3174 2015
- Sogbesan , O. , Davy , M.H. , and Garner , C.P. Insights into the Hydrocarbon and Carbon Monoxide Emissions in Moderately and Highly Dilute Low Temperature Combustion Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 228 11 1285 1296 2014
- Stahl , G. and Warnatz , J. Numerical Investigation of Time-Dependent Properties and Extinction of Strained Methane and Propane-Air Flamelets Combustion and Flame 85 3-4 285 299 1991
- Wehrfritz , A. , Kaario , O. , Vuorinen , V. , and Somers , B. Large Eddy Simulation of N-Dodecane Spray Flames Using Flamelet Generated Manifolds Combustion and Flame 167 113 131 2016
- Westbrook , C.K. , Pitz , W.J. , Herbinet , O. , Curran , H.J. , and Silke , E.J. A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of N-Alkane Hydrocarbons from N-Octane to N-Hexadecane Combustion and Flame 156 1 181 199 2009
- Yao T. , Pei Y. , Zhong B. , Som S. , and Lu T. A Hybrid Mechanism for N-Dodecane Combustion with Optimized Low-Temperature Chemistry 2015
- You , X. , Egolfopoulos , F.N. , and Wang , H. Detailed and Simplified Kinetic Models of N-Dodecane Oxidation: The Role of Fuel Cracking in Aliphatic Hydrocarbon Combustion Proceedings of the Combustion Institute 32 1 403 410 2009