This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Methane Direct Injection in an Optical SI Engine - Comparison between Different Combustion Modes
Technical Paper
2019-01-0083
ISSN: 0148-7191,
e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Natural gas, biogas, and biomethane are attractive fuels for compressed natural gas (CNG) engines because of their beneficial physical and chemical characteristics. This paper examines three combustion modes - homogeneous stoichiometric, homogeneous lean burn, and stratified combustion - in an optical single cylinder engine with a gas direct injection system operating with an injection pressure of 18 bar. The combustion process in each mode was characterized by indicated parameters, recording combustion images, and analysing combustion chemiluminescence emission spectra. Pure methane, which is the main component of CNG (up to 98%) or biomethane (> 98 %), was used as the fuel. Chemiluminescence emission spectrum analysis showed that OH* and CN* peaks appeared at their characteristic wavelengths in all three combustion modes. The peak of OH* and broadband CO2* intensities were strongly dependent on the air/fuel ratio conditions in the cylinder. Lower OH* and CO2* intensities were observed with lean air/fuel mixtures because under these conditions, more air was present, the combustion reactions were slower, and the cylinder pressure was higher. CN* was formed by the spark plasma and was detected over a particularly long period when using a dual coil ignition system. The intensities of the OH* and CN* signals correlated when using this ignition system. Combustion image analysis showed that the flame had a wrinkled boundary in stoichiometric and lean burn modes and was especially distorted in stratified mode. No yellow soot luminescence was observed during homogeneous combustion. However, the emission spectra and combustion images acquired during stratified combustion showed that soot formation occurred due to the presence of fuel-rich areas with inadequate mixing in the cylinder. The difficulty of maintaining stable fuel injection, achieving proper air/fuel mixing, and ensuring stable flame propagation in lean air/fuel mixtures increased cycle-to-cycle variations. However, the homogeneous lean burn and stratified combustion modes achieved significantly lower indicated specific fuel consumption values than stoichiometric combustion.
Authors
Topic
Citation
Melaika, M., Andersson, M., and Dahlander, P., "Methane Direct Injection in an Optical SI Engine - Comparison between Different Combustion Modes," SAE Technical Paper 2019-01-0083, 2019, https://doi.org/10.4271/2019-01-0083.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] | ||
[Unnamed Dataset 4] |
Also In
References
- United States Environmental Protection Agency , “Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards,” Available from United States Environmental Protection Agency from https://www.epa.gov, Oct 2012.
- European Commission , “Reducing CO2 Emissions from Passenger Cars,” Available from European Commission from https://ec.europa.eu/, July 2012.
- Boretti, A., Lappas, P., Zhang, B., and Mazlan, S. , “CNG Fueling Strategies for Commercial Vehicles Engines-A Literature Review,” SAE Technical Paper 2013-01-2812, 2013, doi:10.4271/2013-01-2812.
- Kakaee, A., Paikani, A., and Ghajar, M. , “The Influence of Fuel Composition on the Combustion and Emission Characteristics of Natural Gas Fueled Engines,” Renewable and Sustainable Energy Reviews 38:64-78, 2014, doi:10.1016/j.rser.2014.05.080.
- Mokhatab, S., Poe, W.A., and Mak, J.Y. , Handbook of Natural Gas Transmission and Processing Third Edition (Gulf Professional Publishing, 2015), 628, doi:10.1016/C2013-0-15625-5.
- Karavalakis, G., Hajbabaei, M., Durbin, T., Zheng, Z. et al. , “Influence of Different Natural Gas Blends on the Regulated Emissions, Particle Number and Size Distribution Emissions from a Refuse Hauler Truck,” SAE Int. J. Fuels Lubr. 5(3):928-944, 2012, doi:10.4271/2012-01-1583.
- Vavra, J., Takats, M., Klir, V., and Skarohlid, M. , “Influence of Natural Gas Composition on Turbocharged Stoichiometric SI Engine Performance,” SAE Technical Paper 2012-01-1647, 2012, doi:10.4271/2012-01-1647.
- GasOn project , “Natural Gas/Methane Fuels: European Automotive Fuel Quality and Standardization Requirements,” Available from GasOn project from http://www.gason.eu/, Oct 2018.
- Angelidaki, I., Treu, L., Tsapekos, P., Luo, G. et al. , “Biogas Upgrading and Utilization: Current Status and Perspectives,” Biotechnology Advances 36:452-466, 2018, doi:10.1016/j.biotechadv.2018.01.011.
- Kim, Y., Kawahara, N., Tomita, E., Oshibe, H. et al. , “Effect of Bio-Gas Contents on SI Combustion for a Co-Generation Engine,” SAE Technical Paper 2015-01-1946, 2015, doi:10.4271/2015-01-1946.
- Byun, J.S. and Park, J. , “Predicting the Performance and Exhaust NOx Emissions of a Spark-Ignition Engine Generator Fueled with Methane Based Biogases Containing Various Amounts of CO2,” Journal of Natural Gas Science and Engineering 22:196-202, 2015, doi:10.1016/j.jngse.2014.11.031.
- Kougias, P.G., Treu, L., Benavente, D.P., and Boe, K. , “Ex-Situ Biogas Upgrading and Enhancement in Different Reactor Systems,” Bioresource Technology 225:429-437, 2017, doi:10.1016/j.biortech.2016.11.124.
- Tuner, M. , “Review and Benchmarking of Alternative Fuels in Conventional and Advanced Engine Concepts with Emphasis on Efficiency, CO2, and Regulated Emissions,” SAE Technical Paper 2016-01-0882, 2016, doi:10.4271/2016-01-0882.
- Sun, Q., Li, H., Yan, J., Liu, L. et al. , “Selection of Appropriate Biogas Upgrading Technology-A Review of Biogas Cleaning, Upgrading and Utilisation,” Renewable and Sustainable Energy Reviews 51:521-532, 2015, doi:10.1016/j.rser.2015.06.029.
- Di Iorio, S., Sementa, P., Vaglieco, B., and Catapano, F. , “An Experimental Investigation on Combustion and Engine Performance and Emissions of a Methane-Gasoline Dual-Fuel Optical Engine,” SAE Technical Paper 2014-01-1329, 2014, doi:10.4271/2014-01-1329.
- Catapano, F., Di Iorio, S., Sementa, P., and Vaglieco, B. , “Characterization of CH4 and CH4/H2 Mixtures Combustion in a Small Displacement Optical Engine,” SAE Int. J. Fuels Lubr. 6(1):24-33, 2013, doi:10.4271/2013-01-0852.
- Heywood, J.B. , Internal Combustion Engine Fundamentals, (McGraw-Hill, 1988), 960, ISBN-10: 007028637X.
- Sankesh, D. and Lappas, P. , “Natural-Gas Direct-Injection for Spark-Ignition Engines - A Review on Late-Injection Studies,” SAE Technical Paper 2017-26-0067, 2017, doi:10.4271/2017-26-0067.
- Yang, C., li, W., Yin, J., and Shen, Y. , “Port Fuel Injection of CNG for Downsized 1-Liter 3-Cylinder Turbocharged Engine with High Efficiency,” SAE Technical Paper 2017-01-2275, 2017, doi:10.4271/2017-01-2275.
- Ferrera, M. , “Highly Efficient Natural Gas Engines,” SAE Technical Paper 2017-24-0059, 2017, doi:10.4271/2017-24-0059.
- Douailler, B., Ravet, F., Delpech, V., Soleri, D. et al. , “Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation,” SAE Technical Paper 2011-01-0923, 2011, doi:10.4271/2011-01-0923.
- Korakianitis, T., Namasivayam, A.M., and Crookes, R.J. , “Natural-Gas Fueled Spark-Ignition (SI) and Compression-Ignition (CI) Engine Performance and Emissions,” Progress in Energy and Combustion Science 37:89-112, 2011, doi:10.1016/j.pecs.2010.04.002.
- Hall, J., Bassett, M., Hibberd, B., and Streng, S. , “Heavily Downsized Demonstrator Engine Optimised for CNG Operation,” SAE Int. J. Engines 9(4):2250-2261, 2016, doi:10.4271/2016-01-2363.
- Baratta, M., Misul, D., Xu, J., Fuerhapter, A. et al. , “Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation,” SAE Int. J. Engines 10(5):2535-2551, 2017, doi:10.4271/2017-24-0152.
- Hall, J., Hibberd, B., Streng, S., and Bassett, M. , “Compressed-Natural-Gas Optimized Downsized Demonstrator Engine,” Proc IMechE Part D: J Automobile Engineering 232(1):75-89, 2018, doi:10.1177/0954407017707552.
- Sevik, J., Pamminger, M., Wallner, T., Scarcelli, R. et al. , “Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine,” SAE Int. J. Engines 9(4):2262-2271, 2016, doi:10.4271/2016-01-2364.
- AEsoy, V., Magne Einang, P., Stenersen, D., Hennie, E. et al. , “LNG-Fuelled Engines and Fuel Systems for Medium-Speed Engines in Maritime Applications,” SAE Technical Paper 2011-01-1998, 2011, doi:10.4271/2011-01-1998.
- A-Aziz, A. and Firmansyah , “The Effect of Fuel Rail Pressure on the Performance of a CNG-Direct Injection Engine,” SAE Technical Paper 2009-01-1498, 2009, doi:10.4271/2009-01-1498.
- Zhao, H. , Advanced Direct Injection Combustion Engine Technologies and Development. Volume 1: Petrol and Gas Engines (Woodhead Publishing, 2009), 312. ISBN:978-1-84569-389-3.
- Moon, S. , “Potential of Direct-Injection for the Improvement of Homogeneous-Charge Combustion in Spark-Ignition Natural Gas Engines,” Applied Thermal Engineering 136:41-48, 2018, doi:10.1016/j.applthermaleng.2018.01.068.
- Baratta, M., Rapetto, N., Spessa, E., Fuerhapter, A. et al. , “Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine,” SAE Technical Paper 2012-01-0401, 2012, doi:10.4271/2012-01-0401.
- Catapano, F., Di Iorio, S., Sementa, P., and Vaglieco, B. , “Particle Formation and Emissions in an Optical Small Displacement SI Engine Dual Fueled with CNG DI and Gasoline PFI,” SAE Technical Paper 2017-24-0092, 2017, doi:10.4271/2017-24-0092.
- Kalam, M.A. and Masjuki, H.H. , “An Experimental Investigation of High Performance Natural Gas Engine with Direct Injection,” J. Energy 36:3563-3571, 2011, doi:10.1016/j.energy.2011.03.066.
- Goto, Y. and Sato, Y. , “NOx Reduction on Direct Injection Natural Gas Engines,” SAE Technical Paper 1999-01-3608, 1999, doi:10.4271/1999-01-3608.
- Hofmann, P., Hofherr, T., Hoffmann, G., and Preuhs, J.F. , “Potential of CNG Direct Injection for Downsizing Engines,” MTZ Worldwide 77(7-8):28-35, 2016, doi:10.1007/s38313-016-0074-6.
- Robinson, J.W. , Handbook of Spectroscopy, I (1974), 796. ISBN:0-8493-0331-1.
- Fansler, T.D., Stojkovic, B., Drake, M.C., and Rosalik, M.E. , “Local Fuel Concentration Measurements in Internal Combustion Engines Using Spark-Emission Spectroscopy,” Appl. Phys. B 75:577-590, 2002, doi:10.1007/s00340-002-0954-0.
- Tornatore, C., Irimescu, A., Marchitto, L., Merola, S.S. et al. , “Combustion Process Analysis in a DISI Engine Fuelled with N-Butanol through UV-VIS Emission Spectroscopy,” IACSIT International Journal of Engineering and Technology 7(3):242-248, 2015, doi:0.7763/IJET.2015.V7.799.
- Tornatore, C., Merola, S., Valentino, G., and Marchitto, L. , “In-Cylinder Spectroscopic Measurements of Combustion Process in a SI Engine Fuelled with Butanol-Gasoline Blend,” SAE Technical Paper 2013-01-1318, 2013, doi:10.4271/2013-01-1318.
- Ballester, J. and Garcı´a-Armingol, T. , “Diagnostic Techniques for the Monitoring and Control of Practical Flames,” Progress in Energy and Combustion Science 36:375-411, 2010, doi:10.1016/j.pecs.2009.11.005.
- Samaniego, J.-M., Egolfopoulos, F.N., and Bowman, C.T. , “CO2* Chemiluminescence in Premixed Flames,” Combustion Science and Technology 109:183-203, 1995, doi:10.1080/00102209508951901.
- Glassman, I. and Yetter, R.A. , Combustion Fourth Edition (Elsevier, 2008), 773. ISBN:978-0-12-088573-2.
- Kawahara, N., Hashimoto, S., and Tomita, E. , “Spark Discharge Ignition Process in a Spark-Ignition Engine Using a Time Series of Spectra Measurements,” Proceedings of the Combustion Institute 36:3451-3458, 2017, doi:10.1016/j.proci.2016.08.029.
- Johansen, L.C.R. and Hemdal, S. , “In Cylinder Visualization of Stratified Combustion of E85 and Main Sources of Soot Formation,” Fuel 159:392-411, 2015, doi:10.1016/j.fuel.2015.07.013.
- Sementa, P., Catapano, F., Vaglieco, B., and Di Iorio, S. , “Optical Characterization of Methane Combustion in a Four Stroke Engine for Two Wheel Application,” SAE Technical Paper 2012-01-1150, 2012, doi:10.4271/2012-01-1150.
- Dandy, D.S. and Vosen, S.R. , “Numerical and Experimental Studies of Hydroxyl Radical Chemiluminescence in Methane-Air Flames,” Combustion Science and Technology 82:131-150, 1992, doi:10.1080/00102209208951816.
- Orain, M. and Hardalupas, Y. , “Effect of Fuel Type on Equivalence Ratio Measurements Using Chemiluminescence in Premixed Flames,” C. R. Mecanique 338:241-254, 2010, doi:10.1016/j.crme.2010.05.002.
- Pearse, R.W.B. and Gaydon, A.G. , The Identification of Molecular Spectra, Third Edition (1963), 333. ISBN:041214350X.
- Stojkovic, B.D., Fansler, T.D., Drake, M.C., and Sick, V. , “High-Speed Imaging of OH* and Soot Temperature and Concentration in a Stratified-Charge Direct-Injection Gasoline Engine,” Proceedings of the Combustion Institute 30:2657-2665, 2005, doi:10.1016/j.proci.2004.08.021.
- Merola, S., Marchitto, L., Tornatore, C., Valentino, G. et al. , “UV-Visible Optical Characterization of the Early Combustion Stage in a DISI Engine Fuelled with Butanol-Gasoline Blend,” SAE Int. J. Engines 6(4):1953-1969, 2013, doi:10.4271/2013-01-2638.
- Higgins, B., McQuay, M.Q., Lacas, F., and Candel, S. , “An Experimental Study on The Effect of Pressure and Strain Rate on CH Chemiluminescence of Premixed Fuel - Lean Methane/Air Flames,” Fuel 80(11):1583-1591, 2001, doi:10.1016/S0016-2361(01)00040-0.
- Glassman, I. , “Soot Formation in Combustion Processes,” Symposium (International) on Combustion 22(1):295-311, 1989, doi:10.1016/S0082-0784(89)80036-0.
- Bartok, W. and Kuriskin, R.J. , “Formation of Soot Precursors in Diffusion Flames,” Combustion Science and Technology 58(4-6):281-295, 1988, doi:10.1080/00102208808923968.
- Musculus, M., Dec, J., and Tree, D. , “Effects of Fuel Parameters and Diffusion Flame Lift-Off on Soot Formation in a Heavy-Duty DI Diesel Engine,” SAE Technical Paper 2002-01-0889, 2002, doi:10.4271/2002-01-0889.
- Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K. , “A Comprehensive Modeling Study of Iso-Octane Oxidation,” Combustion and Flame 129:253-280, 2002, doi:10.1016/S0010-2180(01)00373-X.
- McAllister, S., Chen, J., and Fernandez-Pello, A.C. , Fundamentals of Combustion Processes (Springer, 2011), 302. ISBN:978-1-4419-7942-1.
- Mansha, M., Saleemi, A.R., and Ghauri, B.M. , “Kinetic Models of Natural Gas Combustion in an Internal Combustion Engine,” Journal of Natural Gas Chemistry 19:6-14, 2010, doi:10.1016/S1003-9953(09)60024-4.
- Hardalupas, Y. and Orain, M. , “Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission from a Flame,” Combustion and Flame 139:188-207, 2004, doi:10.1016/j.combustflame.2004.08.003.
- Gupta, S.B., Bihari, P.B., Biruduganti, M.S., Sekar, R.R. et al. , “On Use of CO2 Chemiluminescence for Combustion Metrics in Natural Gas Fired Reciprocating Engines,” Proceedings of the Combustion Institute 33:3131-3139, 2011, doi:10.1016/j.proci.2010.05.032.
- Melaika, M. and Dahlander, P. , “Experimental Investigation of Methane Direct Injection with Stratified Charge Combustion in Optical SI Single Cylinder Engine,” SAE Technical Paper 2016-01-0797, 2016, doi:10.4271/2016-01-0797.
- Najm, H.N., Paul, P.H., Mueller, C.J., and Wyckoff, P.S. , “On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate,” Combustion and Flame 113:312-332, 1998, doi:10.1016/S0010-2180(97)00209-5.
- Nori, V.N. and Seitzman, J.M. , “Chemiluminescence Measurements and Modeling in Syngas, Methane and Jet-A Fueled Combustors,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, 2007, 1-14, doi:10.2514/6.2007-466.
- Aleiferis, P.G., Hardalupas, Y., Taylor, A.M.K.P., Ishii, K. et al. , “Flame Chemiluminescence Studies of Cyclic Combustion Variations and Air-To-Fuel Ratio of the Reacting Mixture in a Lean-Burn Stratified-Charge Spark-Ignition Engine,” Combustion and Flame 136:72-90, 2004, doi:10.1016/j.combustflame.2003.09.004.
- Melaika, M. , “Research of a Combustion Process in a Spark Ignition Engine, Fuelled With Gaseous Fuel Mixtures,” Doctoral dissertation, VGTU Press Technika, 2016, 157, ISBN 978-609-457-996-7.
- Polcyn, N., Lai, M., and Lee, P. , “Investigation of Ignition Energy with Visualization on a Spark Ignited Engine powered by CNG,” SAE Technical Paper 2014-01-1331, 2014, doi:10.4271/2014-01-1331.
- Jung, J., Park, S., and Bae, C. , “Combustion Characteristics of Gasoline and n-Butane under Lean Stratified Mixture Conditions in a Spray-Guided Direct Injection Spark Ignition Engine,” Fuel 187:146-158, 2017, doi:10.1016/j.fuel.2016.08.085.
- Montgomery, D.C. , Design and Analysis of Experiments Fifth Edition (John Willey & Sons, 2001), 684. ISBN:0-471-31649-0.
- Chen, S. and Beck, N. , “Gas Engine Combustion Principles and Applications,” SAE Technical Paper 2001-01-2489, 2001, doi:10.4271/2001-01-2489.
- Cho, H.M. and He, B.Q. , “Spark Ignition Natural Gas Engines-A Review,” Energy Conversion and Management 48:608-618, 2007, doi:10.1016/j.enconman.2006.05.023.
- Zoldak, P., John Joseph, J., Shelley, W., Johnson, J. et al. , “Characterization of Partially Stratified Direct Injection of Natural Gas for Spark-Ignited Engines,” SAE Technical Paper 2015-01-0937, 2015, doi:10.4271/2015-01-0937.
- Tadesse, G. and Aziz, A. , “Effect of Boost Pressure on Engine Performance and Exhaust Emissions in Direct-Injection Compressed Natural Gas (CNG-DI) Spark Ignition Engine,” SAE Technical Paper 2009-32-0135, 2009.
- Merola, S.S., Di Iorio, S., Irimescu, A., Sementa, P. et al. , “Spectroscopic Characterization of Energy Transfer and Thermal Conditions of the Flame Kernel in a Spark Ignition Engine Fueled with Methane and Hydrogen,” International Journal of Hydrogen Energy 42:1327-1328, 2017, doi:10.1016/j.ijhydene.2017.03.219.
- Fansler, T.D. and Drake, M.C. , “Designer Diagnostics for Developing Direct Injection Gasoline Engines,” Journal of Physics: Conference Series 45:1-17, 2006, doi:10.1088/1742-6596/45/1/001.
- Quintinoa, F.M., Trindade, T.P., and Fernandesa, E.C. , “Biogas Combustion: Chemiluminescence Fingerprint,” Fuel 231:328-340, 2018, doi:10.1016/j.fuel.2018.05.086.
- Navakas, R., Saliamonas, A., Striugas, N., Dziugys, A. et al. , “Effect of Producer Gas Addition and Air Excess Ratio on Natural Gas Flame Luminescence,” Fuel 217:478-489, 2018, doi:10.1016/j.fuel.2017.12.094.
- Tripathi, M.M., Krishnan, S.R., Srinivasan, K.K., Yueh, F.Y. et al. , “Chemiluminescence-Based Multivariate Sensing of Local Equivalence Ratios in Premixed Atmospheric Methane-Air Flames,” Fuel 93:684-691, 2012, doi:10.1016/j.fuel.2011.08.038.
- Irimescu, A., Merola, S., and Martinez, S. , “Influence of Engine Speed and Injection Phasing on Lean Combustion for Different Dilution rates in an Optically Accessible Wall Guided Spark Ignition Engine,” SAE Technical Paper 2018-01-1421, 2018, doi:10.4271/2018-01-1421.
- Panoutsos, C.S., Hardalupas, Y., and Taylor, A.M.K.P. , “Numerical Evaluation of Equivalence Ratio Measurement using OH∗ and CH∗ Chemiluminescence in Premixed and Non-Premixed Methane-Air Flames,” Combustion and Flame 156:273-291, 2009, doi:10.1016/j.combustflame.2008.11.008.
- Haynes, B.S. and Wagner, H.G. , “Soot Formation,” Progress in Energy and Combustion Science 7:229-273, 1981, doi:10.1016/0360-1285(81)90001-0.
- Tree, D.R. and Svensson, K.I. , “Soot Processes in Compression Ignition Engines,” Progress in Energy and Combustion Science 33:272-309, 2007, doi:10.1016/j.pecs.2006.03.002.
- Hemdal, S., Andersson, M., Dahlander, P., Ochoterena, R. et al. , “In-Cylinder Soot Imaging and Emissions of Stratified Combustion in a Spark-Ignited Spray-Guided Direct-Injection Petrol Engine,” Int. J. Engine Research 12:549-563, 2011, doi:10.1177/1468087411418167.