This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Dynamics of Methane and NOx Removal by a Three-Way Catalyst: A Transient Response Study

Published April 3, 2018 by SAE International in United States
The Dynamics of Methane and NO<sub>x</sub> Removal by a Three-Way Catalyst: A Transient Response Study
Citation: Xi, Y., Ottinger, N., and Liu, Z., "The Dynamics of Methane and NOx Removal by a Three-Way Catalyst: A Transient Response Study," SAE Int. J. Engines 11(6):1331-1341, 2018,
Language: English


  1. Da Costa, P., Salaün, M., Mariadassou, G.D., Da Costa, S. et al. , “Comparative Study of Natural Gas Vehicles Commercial Catalysts in Monolithic Form,” SAE Technical Paper 2007-01-0039 , 2007, doi:10.4271/2007-01-0039.
  2. Chiu, J.P., Taylor, J.D., Tai, C., Reppert, T. et al. , “US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine,” SAE Technical Paper 2007-01-1930 , 2007, doi:10.4271/2007-01-1930.
  3. Ottinger, N., Veele, R., Xi, Y., and Liu, Z. , “Desulfation of Pd-Based Oxidation Catalysts for Lean-Burn Natural Gas and Dual-Fuel Applications,” SAE Int. J. Engines 8(4):1472-1477, 2015, doi:10.4271/2015-01-0991.
  4. Xi, Y., Ottinger, N., and Liu, G.Z. , “Effect of Reductive Regeneration Conditions on Reactivity and Stability of a Pd-Based Oxidation Catalyst for Lean-Burn Natural Gas Applications,” SAE Technical Paper 2016-01-1005, 2016, doi:10.4271/2016-01-1005.
  5. Xi, Y., Ottinger, N., and Liu, G.Z. , “Development of a Lab Reactor System for the Evaluation of Aftertreatment Catalysts for Stoichiometric Natural Gas Engines,” SAE Technical Paper 2017-01-0999 , 2017, doi:10.4271/2017-01-0999.
  6. Gandhi, H.S., Graham, G.W., and McCabe, R.W. , “Automotive Exhaust Catalysis,” J. Catal. 216:433-443, 2003.
  7. Salaun, M., Kouakou, A., Da Costa, S., and Da Costa, P. , “Synthetic Gas Bench Study of a Natural Gas Vehicle Commercial Catalyst in Monolithic Form: On the Effect of Gas Composition,” Appl. Catal. B Environ. 88:386-397, 2009.
  8. Boaro, M., Leitenburg, C., Dolcetti, G., and Trovarelli, A. , “The Dynamics of Oxygen Storage in Ceria-Zirconia Model Catalysts Measured by CO Oxidation under Stationary and Cycling Feedstream Compositions,” J. Catal. 193:338-347, 2000.
  9. Craciun, R., Shereck, B., and Gorte, R.J. , “Kinetic Studies of Methane Steam Reforming on Ceria-Supported Pd,” Catal. Lett. 51:149-153, 1998.
  10. Kang, S.B., Nam, S.B., Cho, B.K., Nam, I.S. et al. , “Effect of Speciated HCs on the Performance of Modern Commercial TWCs,” Catal. Today 231:3-14, 2014.
  11. Schlatter, J.C., Slnkevitch, R.M., and Mitchell, P.J. , “Laboratory Reactor System for Three-Way Automotive Catalyst Evaluation,” Ind. Eng. Chem. Prod. Res. Dev. 22:51-56, 1983.
  12. Xi, Y., Ottinger, N., and Liu, Z.G. , “New Insights into Sulfur Poisoning on a Vanadia SCR Catalyst under Simulated Diesel Engine Operating Conditions,” Appl. Catal. B Environ. 160-161:1-9, 2014.
  13. Xi, Y., Ottinger, N., and Liu, Z.G. , “Influence of Hydrocarbon Species on its Adsorption on a VSCR Catalyst under Simulated Diesel Engine Operating Conditions,” Appl. Catal. B Environ. 217:581-590, 2017.
  14. Brettschneider, J. , “Berechung des Luftverhaeltnisses λ von Luft-Kraftstoff-Gemsichen und des Einflusses on Messfehlern auf λ,” Bosch Technische Berichte 6(4):177-186, 1979.
  15. Beulertz, G., Votsmeier, M., and Moos, R. , “Effect of Propene, Propane, and Methane on Conversion and Oxidation State of Three-Way Catalysts: A Microwave Cavity Perturbation Study,” Appl. Catal. B Environ. 165:369-377, 2015.
  16. Siemund, S., Leclerc, J.P., Schweich, D., Prigent, M. et al. , “Three-Way Monolithic Converter: Simulations Versus Experiments,” Chem. Eng. Sci. 51:3709-3720, 1996.
  17. Gong, J., Wang, D., Li, J., Currier, N. et al. , “Dynamic Oxygen Storage Modeling in a Three-Way Catalyst for Natural Gas Engines: A Dual-Site and Shrinking-Core Diffusion Approach,” Appl. Catal. B Environ. 203:936-945, 2017.
  18. DieselNet ,
  19. Yao, H.C. and Yao, Y.F.Y. , “Ceria in Automotive Exhaust Catalysts I. Oxygen Storage,” J. Catal. 86:254-265, 1984.
  20. Bunluesin, T., Gorte, R.J., and Graham, G.W. , “Studies of the Water-Gas-Shift Reaction on Ceria-Supported Pt, Pd, and Rh: Implications for Oxygen-Storage Properties,” Appl. Catal. B Environ. 15:107-114, 1998.
  21. Benson, J.E., Hwang, H.S., and Boudart, M. , “Hydrogen-Oxygen Titration Method for the Measurement of Supported Palladium Surface Areas,” J. Catal. 30:146-153, 1973.
  22. Jones, G., Jakobsen, J.G., Shim, S.S., Kleis, J. et al. , “First Principles Calculations and Experimental Insight into Methane Steam Reforming over Transition Metal Catalysts,” J. Catal. 259:147-160, 2008.
  23. Fujimoto, K., Ribeiro, F.H., Avalos-Borja, M., and Iglesia, E. , “Structure and Reactivity of PdOx/ZrO2 Catalysts for Methane Oxidation at Low Temperatures,” J. Catal. 179:431-442, 1998.

Cited By