This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Lightweight Third-Generation Advanced High-Strength Steel (3GAHSS) Vehicle Body Structure

Journal Article
2018-01-1026
ISSN: 1946-3979, e-ISSN: 1946-3987
Published April 03, 2018 by SAE International in United States
Development of a Lightweight Third-Generation Advanced High-Strength Steel (3GAHSS) Vehicle Body Structure
Sector:
Citation: Savic, V., Hector, L., Singh, H., Paramasuwom, M. et al., "Development of a Lightweight Third-Generation Advanced High-Strength Steel (3GAHSS) Vehicle Body Structure," SAE Int. J. Mater. Manf. 11(4):303-313, 2018, https://doi.org/10.4271/2018-01-1026.
Language: English

References

  1. National Research Council , “Integrated Computational Materials Engineering. A Transformational Discipline for Improved National Competitiveness and National Security,” The National Academies Press, Washington, DC, 2008, ISBN:978-0-309-11999-3, http://www.nap.edu/catalog/12199.html
  2. Allison, J. , “Integrated Computational Materials Engineering: A Perspective on Progress and Future Steps,” The Journal of the Minerals, Metals & Materials Society 63(4):15-18, 2011, doi:10.1007/s11837-011-0053-y.
  3. Chopra, N. , “Integrated Computational Materials Engineering: A Multi-Scale Approach,” The Journal of the Minerals, Metals & Materials Society 67(1):118-119, 2015, doi:10.1007/s11837-014-1260-0.
  4. Pollock, T.M. , “Alloy Design for Aircraft Engines,” Nature Materials 15:809-815, 2016, doi:10.1038/nmat4709.
  5. Allison, J., Liu, B., Boyle, K.P., Hector, Jr., L.G. et al. , “Integrated Materials Engineering for Magnesium in Automotive Body Applications,” in Magnesium Technology 2010, edited by Agnew, S.R., Neelameggham, N.R., Nyberg, E.A., and Sillekens, W.H. (Warrendale, PA, The Minerals, Metals & Materials Society, 2010), 35-40, ISBN:978-0-87339-746-9.
  6. Sabau, A.S., Porter, W.D., Roy, S., and Shyam, A. , “Process Simulation Role in the Development of New Alloys Based on Integrated Computational Material Science and Engineering,” ASME 2014 International Mechanical Engineering Congress & Exposition, Montreal, Canada, 2014.
  7. Cheng, G., Choi, K.S., Hu, X.H., and Sun, X. , “Computational Material Design for Q&P Steels with Plastic Instability Theory,” Materials & Design 132:526-538, 2017, doi:10.1016/j.matdes-.2017.07.029.
  8. Spadaccini, C.M., Jackson, J., Watts, S., Tortorelli, D. et al. , “Integrated Computational Materials Engineering (ICME) Approaches to the Design and Fabrication of Architected Materials,” 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, 2017.
  9. Joost, W.J. , “Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering,” The Journal of the Minerals, Metals & Materials Society 64(9):1032-1038, 2012, doi:10.1007/s11837-012-0424-z.
  10. Savic, V., Hector, L., Ezzat, H., Sachdev, A. et al. , “Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development,” SAE Technical Paper 2015-01-0459 , 2015, doi:10.4271/2015-01-0459.
  11. Savic, V., Hector, L., Basu, U., Basudhar, A. et al. , “Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels,” SAE Technical Paper 2017-01-0226 , 2017, doi:10.4271/2017-01-0226.
  12. Zamiri, A.R. and Pourboghrat, F. , “A Novel Yield Function for Single Crystals Based on Combined Constraints Optimization,” International Journal of Plasticity 26:731-746, 2010, doi:10.1016/j.ijplas.2009.10.004.
  13. Choi, K.S., Liu, W.N., Sun, X., and Khaleel, M.A. , “Microstructure-Based Constitutive Modeling of TRIP Steel: Prediction of Ductility and Failure Modes under Different Loading Conditions,” Acta Materialia 57:2592-2604, 2009, doi:10.1016/j.actamat.2009.02.020.
  14. Matlock, D.K. and Speer, J.G. , “Third Generation of AHSS: Microstructure Design Concepts,” in Proceedings of the International Conference on Microstructure and Texture in Steels and Other Materials, edited by Haldar, A., Suwas, S., and Bhattacharjee, D. (London, Springer, 2009), 185-205, . doi:10.1007/978-1-84882-454-6.
  15. De Moor, E. et al. , “Strategies for Third-Generation Advanced High-Strength Steel Development,” AIST Transactions, Iron & Steel Technology 7(3):133-144, 2010.
  16. Thomas, G. , “Integrated Computational Materials Engineering. Lab Heat Results Supporting DOE Targets,” Great Designs in Steel, Livonia, MI, May 15, 2015, http://www.autosteel.org/great-designs-in-steel/past-gdis-presentations/gdis-2015.aspx.
  17. Gibbs, P.J. , “Design Considerations for the Third Generation Advanced High Strength, Steel,” Ph.D. thesis, Colorado School of Mines, 2012.
  18. De Moor, E., Matlock, D.K., Speer, J.G., and Merwin, M.J. , “Austenite Stabilization through Manganese Enrichment,” Scripta Materialia 64(2):185-188, 2011, doi:10.1016/j.scripta-mat.2010.09.040.
  19. De Moor, E. et al. , “Effect of Carbon and Manganese on the Quenching and Partitioning Response of CMnSi Steels,” ISIJ International 51(1):137-144, 2011, doi:10.2355/isijinternational-.51.137.
  20. Pourboghrat, F., Park, T., Kim, H., Mohammed, B. et al. , “An Integrated Computational Materials Engineering Approach for Constitutive Modelling of 3rd Generation Advanced High Strength Steels,” Journal of Physics 1063(1), 2018, doi:10.1088/1742-6596/1063/1/012010.
  21. Beyerlein, I.J. and Tome, C.N. , “A Dislocation-Based Constitutive Law for Pure Zr Including Temperature Effects,” International Journal of Plasticity 24(5):867-895, 2008, doi:10.1016/j.ijplas.2007.07.017.
  22. Fellinger, M.R., Hector, L.G. Jr., and Trinkle, D.R. , “Ab Initio Calculations of the Lattice Parameter and Elastic Stiffness Coefficients of bcc Fe with Solutes,” Computational Materials Science 126:503-513, 2017, doi:10.1016/j.commatsci.2016.09.040.
  23. Fellinger, M.R., Hector, L.G. Jr., and Trinkle, D.R. , “Effect of Solutes on the Lattice Parameters and Elastic Stiffness Coefficients of Body-Centered Tetragonal Fe,” Computational Materials Science 152:308-323, 2018, doi:10.1016/j.commatsci.2018.05.021.
  24. Abu-Farha, F., Hu, X., Sun, X., Ren, Y. et al. , “In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels,” Metallurgical and Materials Transactions A 49(7):2583-2596, 2018, doi:10.1007/s1166.
  25. Serri, J. and Cherkaoui, M. , “Constitutive Modeling and Finite Element Analysis of the Formability of TRIP Steels,” Transactions of the ASME 130, 2008, doi:10.1115/1.2931146.
  26. http://www.lstc.com/products/ls-dyna.
  27. Singh, H., Kabeer, B., Jansohn, W., Davies, J. et al. , “Mass Reduction for Light-Duty Vehicles for Model Years 2017-2025 - Final Report,” NHTSA, 2012.
  28. LS-OPT User’s Manual Version 5.2, Livermore Software Technology Corporation, Livermore CA, Dec. 2015, http://www.lsoptsupport.com/documents/manuals/ls-opt/ls-opt-5.2-manual/at_download/file
  29. Alturk, R., Hector, L.G. Jr., Enloe, C.M., Abu-Farha, F. et al. , “Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel,” The Journal of the Minerals, Metals & Materials Society 70(6):894-905, 2018, doi:10.1007/s1183.

Cited By