This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
GPU-Accelerated Meshless CFD Methods for Solving Engineering Problems in the Automotive Industry
Technical Paper
2018-01-0492
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Efficient modelling of complex multi-phase fluid-flows is one of the most common engineering challenges nowadays. The majority of the commonly used CFD solvers are based on Eulerian approaches (grid-based). These methods are, in general, efficient with some drawbacks, e.g. it is necessary to handle additionally the location of the interface or free-surface within computational cells. Very promising alternatives to the Eulerian methods are Lagrangian approaches which, roughly speaking, discretize fluid instead of the domain. One of the most common methods of this kind is the Smoothed Particle Hydrodynamics (SPH) method, a fully Lagrangian, particle-based approach for fluid-flow simulations. One of its main advantages, over the Eulerian techniques, is no need for a numerical grid. Consequently, there is no necessity to handle the interface shape because it is directly obtained from the set of computational particles. Due to this, there is no additional numerical diffusion related to the interface handling. Thus, the SPH method is increasingly used for hydro-engineering and geophysical applications involving free-surfaces and multi-phase flows. One disadvantage of the SPH method over the grid-based approaches is the numerical efficiency. However, in most of the cases involving complex geometries, the human time needed to create computational grids can be so long, that it becomes more time- and cost-efficient to perform calculations using SPH. Furthermore, in recent years new techniques allowing numerical simulations to be performed using Graphics Processing Units (GPU) have been developed. Since the SPH method is easy to write in a parallel manner, we decided to create our SPH simulation framework using Nvidia CUDA technology - a parallel computing platform and programming model developed to use GPU devices for general purpose processing. In the present work, we discuss the potential advantages and disadvantages of using the SPH method for solving typical problems arising in the automotive industry.
Recommended Content
Journal Article | Prediction Snow Ingress into Air Intake System |
Journal Article | Calculation Method of Adsorption and Desorption Performance of Butane Gas in Carbon Canister |
Authors
Citation
Szewc, K., Mangold, J., Bauinger, C., Schifko, M. et al., "GPU-Accelerated Meshless CFD Methods for Solving Engineering Problems in the Automotive Industry," SAE Technical Paper 2018-01-0492, 2018, https://doi.org/10.4271/2018-01-0492.Also In
References
- Monaghan , J.J. Smoothed Particle Hydrodynamics Annual Review of Astronomy and Astrophysics 30 534 574 1992
- Monaghan , J.J. Smoothed Particle Hydrodynamics and its Diverse Applications Annual Review of Fluid Mechanics 44 323 346 2012
- Swegle , J. , Hicks , D. , and Attaway , S. Smoothed Particle Hydrodynamics Stability Analysis Journal of Computational Physics 116 123 134 1995
- Wendland , H. Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree Advances in Computational Mathematics 4 389 396 1995
- Szewc , K. , Pozorski , J. , and Minier , J.P. Analysis of Incompressibility Constraint in the Smoothed Particle Hydrodynamics Method International Journal for Numerical Methods in Engineering 92 343 369 2012a
- Cleary , P.W. and Monaghan , J.J. Conduction Modelling Using Smoothed Particle Hydrodynamics Journal of Computational Physics 148 227 264 1999
- Szewc , K. , Taniere , A. , and Pozorski , J. A Study on Application of Smoothed Particle Hydrodynamics to Multi-Phase Flows International Journal of Nonlinear Sciences and Numerical Simulation 13 383 395 2012b
- Colagrossi , A. and Landrini , M. Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics Journal of Computational Physics 191 227 264 2003
- Rafiee , A. , Cummins , S. , and Rudman , M. Comparative Study on the Accuracy and Stability of SPH Schemes in Simulating Energetic Free-Surface Flows European Journal of Mechanics - B/Fluids 36 1 16 2012
- Solenthaler , B. , Schlafli , J. , and Pajarola , R. A Unified Particle Model for Fluid-Solid Interactions Computer Animation and Virtual Worlds 18 69 82 2007
- Solenthaler , B. and Pajarola , R. Predictive-Corrective Incompressible SPH ACM Transactions on Graphics 28 1 6 2009
- Ihmsen , M. , Cornelis , J. , Solenthaler , B. , Horvath , C. , Teschner , M. 2013 IEEE Transactions on Visualisation and Computer Graphics
- Kleefsman , K.M.T. , Fekken , G. , Veldman , A.E.P. , Iwanowski , B. , and Buchner , B.A. Volume-of.Fluid Based Simulation Method for Wave Impact Problems Journal of Computational Physics 206 363 393 2005
- Mansour , J. 2007 SPH and α-SPH: Applications and Analysis Monash University Australia
- Violau , D. and Issa , R. Numerical Modelling of Complex Turbulent Free-Surface Flows with the SPH Method: An Overview International Journal for Numerical Methods in Fluids 53 277 304 2007
- Hu , X.Y. and Adams , N.A. A SPH model for incompressible turbulence Procedia IUTAM 18 66 75 2015
- Colagrossi , A. and Landrini , M. Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics Journal of Computational Physics 191 227 264 2003
- Hu , X.Y. and Adams , N.A. A Multi-Phase SPH Method for Macroscopic and Mesoscopic Flows Journal of Computational Physics 213 769 795 2006
- Szewc , K. , Taniere , A. , and Pozorski , J. A Study on Application of Smoothed Particle Hydrodynamics to Multi-Phase Flows International Journal of Nonlinear Sciences and Numerical Simulation 13 383 395 2012b
- Szewc , K. , Pozorski , J. , and Minier , J.P. Simulations of Single Bubbles Rising through Viscous Liquid Using Smoothed Particle Hydrodynamics International Journal of Multiphase Flow 50 98 105 2013
- Zhang , A. , Sun , P. , and Ming , F. An SPH Modelling of Bubble Rising and Coalescing in three Dimensions Computer Methods in Applied Mechanics and Engineering 294 189 209 2015
- Szewc , K. , Taniere , A. , and Pozorski , J. A Study on Application of Smoothed Particle Hydrodynamics to Multi-Phase Flows International Journal of Nonlinear Sciences and Numerical Simulation 13 383 395 2012b
- Rafiee , A. , Dutykh , D. , and Dias , F. Numerical Simulation of Wave on Rigid Wall Using two-Phase Compressible SPH Method Procedia IUTAM 18 12 137 2015
- Fürstenau , J.P. , Avci , B. , and Wriggers , P. A Numerical Review of Multi-Fluid SPH Algorithms for High Density Ratios Advances in Computational Fluid-Structure Interaction and Flow Simulation 139 150 2016
- Dalryple , R.A. and Rogers , B.D. Numerical Modelling of Water Waves with SPH Method Coastal Engineering 53 141 147 2006
- Li , J. , Liu , H. , Gong , K. , Tan , S.K. , and Shao , S. SPH Modelling of Solitary Wave Fissions over Uneven Bottoms Coastal Engineering 60 261 275 2012
- Vandamme , J. and Zou , Q. Novel Particle Method for Modelling the Episodic Collapse of Soft Coastial Bluffs Geomorphology 138 295 305 2012
- Haddah , B. , Pastor , M. , Palacias , D. , and Munoz-Salinas , E. A SPH Depth Integrated Model for Popocatepetl 2001 Lahar (Mexico): Sensitivity Analysis and Runout Simulation Engineering Geology 114 312 329 2010
- Prakash , M. and Cleary , P.W. Three-Dimensional Modelling of Lava Flow Using Smoothed Particle Hydrodynamics Applied Mathematical Modelling 35 3021 3025 2011
- Le Touzé , D. , Marsh , A. , Oger , G. , Guilcher , P.M. et al. SPH Simulation of Green Water and Ship Flooding Scenarios Journal of Hydrodynamics 22 231 236 2010
- Veen , D. and Gourlay , T. A Combined Strip Theory and Smoothed Particle Hydrodynamics Approach for Estimating Slamming Loads on a Ship in Head Seas Ocean Engineering 43 64 71 2012
- Szewc , K. , Walczewska-Szewc , K. , Olejnik , M. 2015
- Wieth , L. , Christian , L. , Kurz , W. , Braun , S. , Koch , R. , Bauer , H.J. 2015a Numerical Modeling of an Aero-Engine Bearing Chamber Using the Meshless Smoothed Particle Hydrodynamics Method Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition GT2015 42316
- Wieth , L. , Braun , S. , Koch , R. , Bauer , H.J. , Kelemen K. , Schuchmann , H.P. 2015b Smoothed Particle Hydrodynamics (SPH) Simulation of a High-Pressure Homogenizer Proceedings of the 9th SPHERIC International Workshop Paris
- Tome , M.F. , Grossi , L. , Castelo , A. , Cuminato , J.A. et al. A Numerical Method for Solving three-Dimensional Generalized Newtonian Free Surface Flows Journal of Non-Newtonian Fluid Mechanics 123 85 103 2004
- Tome , M.F. , Grossi , L. , Castelo , A. , Cuminato , J.A. et al. A Numerical Method for Solving three-Dimensional Generalized Newtonian Free Surface Flows Journal of Non-Newtonian Fluid Mechanics 123 85 103 2004
- Cleary , P.W. Modelling Confined Multi-Material Heat and Mass Flows Using SPH Applied Mathematical Modelling 22 981 993 1998
- Cleary , P.W. and Monaghan , J.J. Conduction Modelling Using Smoothed Particle Hydrodynamics Journal of Computational Physics 148 227 264 1999
- Carslaw , H.S. and Jaeger , J.C. Conduction of Heat in Solids London Oxford Univ. Press 1965
- Herault , A. , Bilotta , G. , Dalrymple , R.A. 2014 Achieving the Best Accuracy in an SPH Implementation Proceedings of the 9th SPHERIC International Workshop, Paris 134 139
- Szewc , K. Smoothed Particle Hydrodynamics Modelling of Granular Column Collapse Granular Matter 19 1 13 2017
- Solenthaler , B. and Pajarola , R. Predictive-Corrective Incompressible SPH ACM Transactions on Graphics 28 1 6 2009
- Ihmsen , M. , Cornelis , J. , Solenthaler , B. , Horvath , C. , Teschner , M. 2013 IEEE Transactions on Visualisation and Computer Graphics
- Vignjevic , R. , Reveles , J.R. , and Campbell , J. SPH in a Total Lagrangian Formalism 4 CMC-Tech Science Press 2006 181