This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Durability Study of a High-Pressure Common-Rail Fuel Injection System Using Lubricity Additive-Dosed Gasoline-Like Fuel

Journal Article
2018-01-0270
ISSN: 1946-3952, e-ISSN: 1946-3960
Published April 03, 2018 by SAE International in United States
Durability Study of a High-Pressure Common-Rail Fuel Injection System Using Lubricity Additive-Dosed Gasoline-Like Fuel
Sector:
Citation: Tzanetakis, T., Voice, A., and Traver, M., "Durability Study of a High-Pressure Common-Rail Fuel Injection System Using Lubricity Additive-Dosed Gasoline-Like Fuel," SAE Int. J. Fuels Lubr. 11(4):319-335, 2018, https://doi.org/10.4271/2018-01-0270.
Language: English

References

  1. U.S. Energy Information Administration , “Annual Energy Outlook 2017,” accessed Oct. 2017, https://www.eia.gov/outlooks/aeo/.
  2. ExxonMobil , “Outlook for Energy: A View to 2040,” accessed Oct. 2017, http://corporate.exxonmobil.com/en/energy/energy-outlook.
  3. World Energy Council , “Global Transport Scenarios 2050,” accessed Oct. 2017, https://www.worldenergy.org/publications/2011/global-transport-scenarios-2050/.
  4. Zhang, Y., Voice, A., Tzanetakis, T., Traver, M. et al. , “An Evaluation of Combustion and Emissions Performance with Low Cetane Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine,” J. Eng. Gas Turb. Power. 138(10):102805-1-102805-10, 2016, doi:10.1115/1.4032879.
  5. Zhang, Y., Sommers, S., Yuanjiang, P., Kumar, P. et al. , “Mixing-Controlled Combustion of Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Compression Ignition Engine,” SAE Technical Paper 2017-01-0696 , 2017, doi:10.4271/2017-01-0696.
  6. Zhang, Y., Kumar, P., Traver, M., and Cleary, D. , “Conventional and Low Temperature Combustion Using Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine,” SAE Int. J. Engines 9(2):1021-1035, 2016, doi:10.4271/2016-01-0764.
  7. Lee, J., Zhang, Y., Tzanetakis, T., Traver, M. et al. , “Emission Performance of Low Cetane Naphtha as Drop-in Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System,” SAE Technical Paper 2017-01-1000 , 2017, doi:10.4271/2017-01-1000.
  8. Kalghatgi, G.T., Risberg, P., and Angstrom, H.-E. , “Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel,” SAE Technical Paper 2007-01-0006 , 2007, doi:10.4271/2007-01-0006.
  9. Manente, V., Johansson, B., and Cannella, W. , “Gasoline Partially Premixed Combustion, the Future of Internal Combustion Engines?” Int. J. Engine Res. 12:194-208, 2011, doi:10.1177/1468087411402441.
  10. Won, H.-W., Peters, N., Tait, N., and Kalghatgi, G. , “Sufficiently Premixed Compression Ignition of a Gasoline-Like Fuel Using Three Different Nozzles in a Diesel Engine,” P. I. Mech. Eng. D-J. Aut. 226(5):698-708, 2012, doi:10.1177/0954407011423453.
  11. Won, H.-W., Pitsch, H., Tait, N., and Kalghatgi, G. , “Some Effects of Gasoline and Diesel Mixtures on Partially Premixed Combustion and Comparison with the Practical Fuels Gasoline and Diesel in a Compression Ignition Engine,” P. I. Mech. Eng. D-J. Aut. 226(9):1259-1270, 2012, doi:10.1177/0954407012440075.
  12. Ciatti, S., and Subramanian, S. N. , “An Experimental Investigation of Low-Octane Gasoline in Diesel Engines,” J. Eng. Gas Turb. Power. 133(9):092802-1-11, 2011, doi:10.1115/1.4002915.
  13. Kolodziej, C.P., Ciatti, S., Vuilleumier, D., Adhidary, B.D. et al. , “Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure,” SAE Technical Paper 2014-01-1302 , 2014, doi:10.4271/2014-01-1302.
  14. Nikanjam, M., Crosby, T., Henderson, P., Gray, C. et al. , “ISO Diesel Fuel Lubricity Round Robin Program,” SAE Technical Paper 952372 , 1995, doi:10.4271/952372.
  15. American Society for Testing and Materials , “Standard Test Method for Evaluating Lubricity of Diesel Fuels by the High-Frequency Reciprocating Rig (HFRR),” ASTM Standard D6079, Rev. 2011.
  16. Arkoudeas, P., Karonis, D., Zannikos, F., and Lois, E. , “Lubricity Assessment of Gasoline Fuels,” Fuel Process. Technol. 122:107-119, 2014, doi:10.1016/j.fuproc.2014.01.008.
  17. European Committee for Standardization , “Automotive Fuels - Diesel - Requirements and Test Methods,” EN Standard 590, Rev. 2013.
  18. American Society for Testing and Materials , “Standard Specification for Diesel Fuel Oils,” ASTM D975, Rev. 2017.
  19. Lacey, P.I. and Mason, R.L. , “Fuel Lubricity: Statistical Analysis of Literature Data,” SAE Technical Paper 2000-01-1917 , 2017, doi:10.4271/2000-01-1917.
  20. Ping, W.D., Korcek, S., and Spikes, H. , “Comparison of the Lubricity of Gasoline and Diesel Fuels,” SAE Technical Paper 962010 , 1996, doi:10.4271/962010.
  21. Lopreato, L.G.R., Oliveira, E.J., and Duarte, M.V.E. , “Gasoline Lubricity: An Exploratory Evaluation,” SAE Technical Paper 2012-36-0502 , 2012, doi:10.4271/2012-36-0502.
  22. Voice, A.K., Tzanetakis, T., and Traver, M. , “Lubricity of Light-End Fuels with Commercial Diesel Lubricity Additives,” SAE Technical Paper 2017-01-0871 , 2017, doi:10.4271/2017-01-0871.
  23. Lacey, P.I. and Howell, S.A. , “Fuel Lubricity Reviewed,” SAE Technical Paper 982567 , 1998, doi:10.4271/982567.
  24. Gray, C., Wilcox, A., Scott, M., Webster, G. et al. , “Investigation of Diesel Fuel Lubricity and Evaluation of Bench Tests to Correlate with Medium and Heavy Duty Diesel Fuel Injection Equipment Component Wear - Part 1,” SAE Technical Paper 2002-01-1700 , 2002, doi:10.4271/2002-01-1700.
  25. Nikanjam, M. , “Diesel Fuel Lubricity: On the Path to Specifications,” SAE Technical Paper 1999-01-1479 , 1999, doi:10.4271/1999-01-1479.
  26. Mitchell, K. , “Continued Evaluation of Diesel Fuel Lubricity by Pump Rig Tests,” SAE Technical Paper 981363 , 1998, doi:10.4271/981363.
  27. Yost, D.M., Frame, E.A., and Grinstead, R.E. , “Operability and Compatibility Characteristics of Advanced Technology Diesel Fuels: Pump Evaluations,” SAE Technical Paper 2002-01-1675 , 2002, doi:10.4271/2002-01-1675.
  28. Coordinating Research Council - Advanced Vehicle/Fuel/Lubricants Reports, “Operability and Compatibility Characteristics of Advanced Technology Diesel Fuels,” accessed Oct. 2017, https://www.crcao.org/reports/recentstudies00-02/AVFL-2/AVFL-2%20Final%20Report.PDF.
  29. American Society for Testing and Materials , “Standard Test Method for Evaluating Diesel Fuel Lubricity by an Injection Pump Rig,” ASTM Standard D6898, Rev. 2003.
  30. Coordinating Research Council - Advanced Vehicle/Fuel/Lubricants Reports, “Impact of Biodiesel on Fuel System Component Durability,” accessed Oct. 2017, https://www.crcao.org/reports/recentstudies2005/AVFL-2a%20Final%20Report.pdf.
  31. Terry, B., McCormick, R.L., and Natarajan, M. , “Impact of Biodiesel Blends on Fuel System Component Durability,” SAE Technical Paper 2006-01-3279 , 2006, doi:10.4271/2006-01-3279.
  32. California Air Resources Board , “Biodiesel Fleet Durability Study,” accessed Oct. 2017, https://www.arb.ca.gov/fuels/diesel/altdiesel/biodieseldurabilityreport2010_08_11.pdf.
  33. Lopes, S.M. and Cushing, T. , “The Influence of Biodiesel Fuel Quality on Modern Diesel Vehicle Performance,” SAE Technical Paper 2012-01-0858 , 2012, doi:10.4271/2012-01-0858.
  34. Saltas, E., Bouilly, J., Geivanidis, S., Samaras, Z. et al. , “Investigation of the Effects of Biodiesel Aging on the Degradation of Common Rail Fuel Injection Systems,” Fuel 200:357-370, 2017, doi:10.1016/j.fuel.2017.03.064.
  35. Defense Technical Information Center , “Fuel Lubricity Additive Evaluation,” accessed Oct. 2017, http://www.dtic.mil/get-tr-doc/pdf?AD=ADA326098.
  36. Defense Technical Information Center , “Fuel System Durability - U. S. Coast Guard,” accessed Oct. 2017, http://www.dtic.mil/get-tr-doc/pdf?AD=ADA482669.
  37. Defense Technical Information Center , “Evaluation of Future Fuels in a High Pressure Common Rail System - Part 1 Cummins XPI,” accessed Oct. 2017, http://www.dtic.mil/get-tr-doc/pdf?AD=ADA571036.
  38. Defense Technical Information Center , “Lubricity Doser Evaluation Studies on High Pressure Common Rail Fuel Systems,” accessed Oct. 2017, http://www.dtic.mil/get-tr-doc/pdf?AD=AD1007440.
  39. Totten, G.E., Sun, Y.H., Bishop, R.J., and Lin, X. , “Hydraulic System Cavitation: A Review,” SAE Technical Paper 982036 , 1998, doi:10.4271/982036.
  40. Schmidt, D.P. and Corradini, M.L. , “The Internal Flow of Diesel Fuel Injector Nozzles: A Review,” Int. J. Engine Res. 2(1):1-22, 2001, doi:10.1243/1468087011545316.
  41. Gavaises, M., Papoulias, D., Andriotis, A., Giannadakis, E. et al. , “Link between Cavitation Development and Erosion Damage in Diesel Injector Nozzles,” SAE Technical Paper 2007-01-0246 , 2007, doi:10.4271/2007-01-0246.
  42. Gavaises, M. , “Flow in Valve Covered Orifice Nozzles with Cylindrical and Tapered Holes and Link to Cavitation Erosion and Engine Exhaust Emissions,” Int. J. Engine Res. 9(6):435-447, 2008, doi:10.1243/14680874JER01708.
  43. Mitroglou, N. and Gavaises, M. , “Mapping of Cavitating Flow Regimes in Injectors for Medium-/Heavy-Duty Diesel Engines,” Int. J. Engine Res. 14(6):590-605, 2013, doi:10.1177/1468087413500491.
  44. Koukouvinis, P., Karathanassis, I.K., and Gavaises, M. , “Prediction of Cavitation and Induced Erosion inside a High-Pressure Fuel Pump,” Int. J. Engine Res. 1-14, 2017, doi:10.1177/1468087417708137.
  45. Price, R.J., Blazina, D., Smith, C.G., and Davies, T.J. , “Understanding the Impact of Cavitation on Hydrocarbons in the Middle Distillate Range,” Fuel 156:30-39, 2015, doi:10.1016/j.fuel.2015.04.026.
  46. Lockett, R., Zeeshan, F., Kuti, O., and Price, R. , “An Optical Characterization of the Effect of High-Pressure Hydrodynamic Cavitation on Diesel,” SAE Technical Paper 2016-01-0841 , 2016, doi:10.4271/2016-01-0841.
  47. Lazarev, V.E., Wloka, J.A., and Wachtmeister, G. , “A Method for the Estimation of the Service Life of a Precision Guiding Interface “Needle - Nozzle Body” of a Common-Rail-Injector for High Rail Pressures,” SAE Technical Paper 2011-01-2020 , 2011, doi:10.4271/2011-01-2020.
  48. Birgel, A., Ladommatos, N., Aleiferis, P., Zülch, S. et al. , “Deposit Formation in the Holes of Diesel Injector Nozzles: A Critical Review,” SAE Technical Paper 2008-01-2383 , 2008, doi:10.4271/2008-01-2383.
  49. Lacey, P., Gail, S., Kientz, J.M., Milovanovic, N. et al. , “Internal Fuel Injector Deposits,” SAE Int. J. Fuels Lubr. 5(1):132-145, 2011, doi:10.4271/2011-01-1925.
  50. Lacey, P., Gail, S., Kientz, J., Benoist, G. et al. , “Fuel Quality and Diesel Injector Deposits,” SAE Int. J. Fuels Lubr. 5(3):1187-1198, 2012, doi:10.4271/2012-01-1693.
  51. Bower, G.R. and Foster, D.E. , “A Comparison of the Bosch and Zuech Rate of Injection Meters,” SAE Technical Paper 910724 , 1991, doi:10.4271/910724.
  52. North Atlantic Treaty Organization , “NATO Standard Engine Laboratory Test for (Part I) Gas Turbine Engines and (Part II) Diesel and Spark Ignition Engines,” NATO Standard AEP-5, Rev. 1989.
  53. Wattrus, M. , “Fuel Property Effects on Oil Dilution in Diesel Engines,” SAE Int. J. Fuels Lubr. 6(3):794-806, 2013, doi:10.4271/2013-01-2680.
  54. Environmental Protection Agency , “Inductively Coupled Plasma-Mass Spectrometry,” EPA Method 6020A (SW-846), Rev. 1998.
  55. American Society for Testing and Materials , “Standard Test Method for Gasoline Diluent in Used Gasoline Engine Oils by Gas Chromatography,” ASTM Standard D3525, Rev. 2004.
  56. Lacey, P., Gail, S., Daveau, C., Caprotti, R. et al. , “Use of a Laboratory Scale Test to Study Internal Diesel Injector Deposits,” SAE Technical Paper 2016-01-2247 , 2016, doi:10.4271/2016-01-2247.
  57. Watson, S.A.G., Huang, W., and Wong, V.W. , “Correlations among Ash-Related Oil Species in the Power Cylinder, Crankcase and the Exhaust Stream of a Heavy-Duty Diesel Engine,” SAE Technical Paper 2007-01-1965 , 2007, doi:10.4271/2007-01-1965.
  58. American Society for Testing and Materials , “Standard Test Method for Determination of Calcium, Chlorine, Copper, Magnesium, Phosphorus, Sulfur, and Zinc in Unused Lubricating Oils and Additives by Wavelength Dispersive X-Ray Fluorescence Spectrometry (Mathematical Correction Procedure),” ASTM Standard D6443, Rev. 2014.
  59. American Society for Testing and Materials , “Standard Test Method for Determination of Total Sulfur in Light Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet Fluorescence,” ASTM Standard D5453, Rev. 2016.
  60. Parks, J., Partridge, B., and Whitacre, S. , “Rapid In Situ Measurement of Fuel Dilution of Oil in a Diesel Engine Using Laser-Induced Fluorescence Spectroscopy,” SAE Technical Paper 2007-01-4108 , 2007, doi:10.4271/2007-01-4108.
  61. He, X., Williams, A., Christensen, E., Burton, J. et al. , “Biodiesel Impact on Engine Lubricant Dilution during Active Regeneration of Aftertreatment Systems,” SAE Int. J. Fuels Lubr. 4(2):158-178, 2011, doi:10.4271/2011-01-2396.

Cited By