This content is not included in your SAE MOBILUS subscription, or you are not logged in.

System and Second Law Analysis of the Effects of Reformed Fuel Composition in “Single” Fuel RCCI Combustion

Journal Article
2018-01-0264
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 03, 2018 by SAE International in United States
System and Second Law Analysis of the Effects of Reformed Fuel Composition in “Single” Fuel RCCI Combustion
Sector:
Citation: Dal Forno Chuahy, F. and Kokjohn, S., "System and Second Law Analysis of the Effects of Reformed Fuel Composition in “Single” Fuel RCCI Combustion," SAE Int. J. Engines 11(6):861-878, 2018, https://doi.org/10.4271/2018-01-0264.
Language: English

References

  1. Han , D. , Ickes , A.M. , Bohac , S.V. , Huang , Z. et al. Premixed Low-Temperature Combustion of Blends of Diesel and Gasoline in a High Speed Compression Ignition Engine Proceedings of the Combustion Institute 33 2 3039 3046 2011 10.1016/j.proci.2010.07.045
  2. Dec , J.E. , Yang , Y. , and Dronniou , N. Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements Using Partial Fuel Stratification with Conventional Gasoline SAE Int. J. Engines 4 1 1169 1189 2011 10.4271/2011-01-0897
  3. Hwang , W. , Dec , J. , and Sjöberg , M. Spectroscopic and Chemical-Kinetic Analysis of the Phases of HCCI Autoignition and Combustion for Single- and Two-Stage Ignition Fuels Combustion and Flame 154 3 387 409 2008 10.1016/j.combustflame.2008.03.019
  4. Naser , N. , Jaasim , M. , Atef , N. , Chung , S.H. et al. On the Effects of Fuel Properties and Injection Timing in Partially Premixed Compression Ignition of Low Octane Fuels Fuel 207 373 388 2017 10.1016/j.fuel.2017.06.048
  5. Musculus , M.P.B. , Miles , P.C. , and Pickett , L.M. Conceptual Models for Partially Premixed Low-Temperature Diesel Combustion Progress in Energy and Combustion Science 39 246 283 2013 10.1016/j.pecs.2012.09.001
  6. Kokjohn , S.L. , Hanson , R.M. , Splitter , D.A. , and Reitz , R.D. Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending SAE Int. J. Engines 2 24 39 2009 10.4271/2009-01-2647
  7. Kokjohn , S. , Hanson , R. , Splitter , D. , Kaddatz , J. et al. Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines SAE Int. J. Engines 4 360 374 2011 10.4271/2011-01-0357
  8. Hanson , R.M. , Kokjohn , S.L. , Splitter , D.A. , and Reitz , R.D. An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine SAE Int. J. Engines 3 1 700 716 2010 10.4271/2010-01-0864
  9. Luong , M.B. , Yu , G.H. , Chung , S.H. , and Yoo , C.S. Ignition of a Lean PRF/Air Mixture under RCCI/SCCI Conditions: Chemical Aspects Proceedings of the Combustion Institute 36 3 3587 3596 2017 10.1016/j.proci.2016.06.076
  10. Splitter , D. , Reitz , R.D. , and Hanson , R. High Efficiency, Low Emissions RCCI Combustion by Use of a Fuel Additive SAE Int. J. Fuels Lubr. 3 2 742 756 2010 10.4271/2010-01-2167
  11. Dempsey , A.B. , Curran , S. , and Reitz , R.D. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine SAE Int. J. Engines 8 2 859 877 2015 10.4271/2015-01-0855
  12. Lee , R.C. and Wimmer , D.B. Exhaust Emission Abatement by Fuel Variations to Produce Lean Combustion SAE Technical Paper 680769 1968 10.4271/680769
  13. Fennell , D. , Herreros , J. , and Tsolakis , A. Improving Gasoline Direct Injection (GDI) Engine Efficiency and Emissions with Hydrogen from Exhaust Gas Fuel Reforming International Journal of Hydrogen Energy 39 10 5153 5162 2014 10.1016/j.ijhydene.2014.01.065
  14. Bogarra , M. , Herreros , J.M. , Tsolakis , A. , York , A.P.E. et al. Study of Particulate Matter and Gaseous Emissions in Gasoline Direct Injection Engine Using on-Board Exhaust Gas Fuel Reforming Applied Energy 180 245 255 2016 10.1016/j.apenergy.2016.07.100
  15. Martin , M.D. Gaseous Automotive Fuels from Steam Reformed Liquid Hydrocarbons SAE Technical Paper 780457 1978 10.4271/780457
  16. Conte , E. and Boulouchos , K. Experimental Investigation into the Effect of Reformer Gas Addition on Flame Speed and Flame Front Propagation in Premixed, Homogeneous Charge Gasoline Engines Combustion and Flame 146 329 347 2006 10.1016/j.combustflame.2006.03.001
  17. Szybist , J.P. , Steeper , R.R. , Splitter , D. , Kalaskar , V.B. et al. Negative Valve Overlap Reforming Chemistry in Low-Oxygen Environments SAE Int. J. Engines 7 1 418 433 2014 10.4271/2014-01-1188
  18. Peterson , B. , Ekoto , I. , and Northrop , W. Investigation of Negative Valve Overlap Reforming Products Using Gas Sampling and Single-Zone Modeling SAE Int. J. Engines 8 1 747 757 2015 10.4271/2015-01-0818
  19. Wermuth , N. , Yun , H. , and Najt , P. Enhancing Light Load HCCI Combustion in a Direct Injection Gasoline Engine by Fuel Reforming during Recompression SAE Int. J. Engines 2 1 823 836 2009 10.4271/2009-01-0923
  20. Gukelberger , R. , Gingrich , J. , Alger , T. , and Almaraz , S. Potential and Challenges for a Water-Gas-Shift Catalyst as a Combustion Promoter on a D-EGR® Engine SAE Int. J. Engines 8 2 583 595 2015 10.4271/2015-01-0784
  21. Chadwell , C. , Alger , T. , Zuehl , J. , and Gukelberger , R. A Demonstration of Dedicated EGR on a 2.0 L GDI Engine SAE Int. J. Engines 7 1 434 447 2014 10.4271/2014-01-1190
  22. Hwang , J. , Li , X. , and Northrop , W. Exploration of Dual Fuel Diesel Engine Operation with On-Board Fuel Reforming SAE Technical Paper 2017-01-0757 2017 10.4271/2017-01-0757
  23. Tsolakis , A. , Torbati , R. , Megaritis , A. , and Abu-Jrai , A. Low-Load Dual-Fuel Compression Ignition (CI) Engine Operation with an On-Board Reformer and a Diesel Oxidation Catalyst: Effects on Engine Performance and Emissions Energy & Fuels 24 302 308 2010 10.1021/ef900796p
  24. Sahoo , B.B. , Sahoo , N. , and Saha , U.K. Assessment of a Syngas-Diesel Dual Fuelled Compression Ignition Engine ASME 2010 4th International Conference on Energy Sustainability May 17-22 2010 10.1115/ES2010-90218
  25. Sahoo , B.B. , Saha , U.K. , and Sahoo , N. Theoretical Performance Limits of a Syngas-Diesel Fueled Compression Ignition Engine from Second Law Analysis Energy 36 760 769 2011 10.1016/j.energy.2010.12.045
  26. Sahoo , B.B. , Sahoo , N. , and Saha , U.K. Effect of H2:CO Ratio in Syngas on the Performance of a Dual Fuel Diesel Engine Operation Applied Thermal Engineering 49 139 146 2012 10.1016/j.applthermaleng.2011.08.021
  27. Christodoulou , F. and Megaritis , A. Experimental Investigation of the Effects of Simultaneous Hydrogen and Nitrogen Addition on the Emissions and Combustion of a Diesel Engine International Journal of Hydrogen Energy 39 2692 2702 2014 10.1016/j.ijhydene.2013.11.124
  28. Christodoulou , F. and Megaritis , A. The Effect of Reformer Gas Mixture on the Performance and Emissions of an HSDI Diesel Engine International Journal of Hydrogen Energy 39 9798 9808 2014 10.1016/j.ijhydene.2014.03.090
  29. Boehman , A.L. and Corre , O.L. Combustion of Syngas in Internal Combustion Engines Combustion Science and Technology 180 6 1193 1206 2008 10.1080/00102200801963417
  30. Garnier , A.B. , Le Corre , O. , and Rahmouni , C. Characterisation of a Syngas-Diesel Fuelled CI Engine SAE Technical Paper 2005-01-1731 10.4271/2005-01-1731
  31. Hagos , F.Y. , Aziz , A.R.A. , and Sulaiman , S.A. Trends of Syngas as a Fuel in Internal Combustion Engines Advances in Mechanical Engineering 6 401587 2014 10.1155/2014/401587
  32. Azimov , U. , Okuno , M. , Tsuboi , K. , Kawahara , N. et al. Multidimensional CFD Simulation of Syngas Combustion in a Micro-Pilot-Ignited Dual-Fuel Engine Using a Constructed Chemical Kinetics Mechanism International Journal of Hydrogen Energy 36 21 13793 13807 2011 10.1016/j.ijhydene.2011.07.140
  33. Azimov , U. , Tomita , E. , and Kawahara , N. Diesel Engine - Combustion, Emissions and Condition Monitoring 2013 10.5772/54613
  34. Chuahy , F.D.F. and Kokjohn , S.L. High Efficiency Dual-Fuel Combustion through Thermochemical Recovery and Diesel Reforming Applied Energy 195 503 522 2017 10.1016/j.apenergy.2017.03.078
  35. Chuahy , F.D.F. and Kokjohn , S.L. Effects of Reformed Fuel Composition in “Single” Fuel RCCI Combustion Applied Energy 208 1 11 2017 10.1016/j.apenergy.2017.10.057
  36. Heywood , J. Internal Combustion Engine Fundamentals McGraw-Hill Education 1988 007028637X
  37. Northrop , W.F. , Fang , W. , and Huang , B. Combustion Phasing Effect on Cycle Efficiency of a Diesel Engine Using Advanced Gasoline Fumigation Journal of Engineering for Gas Turbines and Power 135 3 032801 032801 2013 10.1115/1.4007757
  38. Woschni , G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine SAE Technical Paper 670931 1967 10.4271/670931
  39. Chang , J. , Güralp , O. , Filipi , Z. , Assanis , D.N. et al. New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux SAE Technical Paper 2004-01-2996 2004 10.4271/2004-01-2996
  40. Goodwin , D.G. , Moffat , H.K. , and Speth , R.L. 2015
  41. Bell , I.H. , Wronski , J. , Quoilin , S. , and Lemort , V. Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Cool Prop Industrial & Engineering Chemistry Research 53 6 2498 2508 2014 10.1021/ie4033999
  42. Li , Y.-R. , Wang , J.-N. , and Du , M.-T. Influence of Coupled Pinch Point Temperature Difference and Evaporation Temperature on Performance of Organic Rankine Cycle Energy 42 503 509 2012 10.1016/j.energy.2012.03.018
  43. Wu , S.-Y. , Zhou , S.-M. , Xiao , L. , Li , Y.-R. et al. Determining the Optimal Pinch Point Temperature Difference of Evaporator for Waste Heat Recovery Journal of the Energy Institute 87 2 140 151 2014 10.1016/j.joei.2014.03.010
  44. Johnson , T.V. Diesel Emissions in Review SAE Int. J. Engines 4 1 143 157 2011 10.4271/2011-01-0304
  45. Stepanov , V.S. Chemical Energies and Exergies of Fuels Energy 20 3 235 242 1995 10.1016/0360-5442(94)00067-D
  46. Anand , K. , Ra , Y. , Reitz , R.D. , and Bunting , B. Surrogate Model Development for Fuels for Advanced Combustion Engines Energy & Fuels 25 4 1474 1484 2011 10.1021/ef101719a
  47. Chuahy , F.D.F. , Olk , J.L. , Delvescovo , D. , and Kokjohn , S.L. Auto-Ignition Integral Engine Size Scaling Method for Kinetically Controlled Combustion International Journal of Engine Research XX 1 21 2018 10.1177/1468087418786130
  48. Livengood , J.C. and Wu , P.C. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines Symposium (International) on Combustion 5 347 356 1955 10.1016/S0082-0784(55)80047-1
  49. Lawler , B. , Hoffman , M. , Filipi , Z. , Güralp , O. et al. Development of a Postprocessing Methodology for Studying Thermal Stratification in an HCCI Engine Journal of Engineering for Gas Turbines and Power 134 10 102801 2012 10.1115/1.4007010

Cited By