This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Computational Study of Abnormal Combustion Characteristics in Spark Ignition Engines

Journal Article
2018-01-0179
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 03, 2018 by SAE International in United States
A Computational Study of Abnormal Combustion Characteristics in Spark Ignition Engines
Sector:
Citation: Mubarak Ali, M., Hernandez Perez, F., Sow, A., and Im, H., "A Computational Study of Abnormal Combustion Characteristics in Spark Ignition Engines," SAE Int. J. Engines 11(6):743-755, 2018, https://doi.org/10.4271/2018-01-0179.
Language: English

References

  1. G.T.S. WEC, 2050, World Energy Council, Londons, 2011.
  2. Chen, Y. and Raine, R. , “Engine Knock in an SI Engine with Hydrogen Supplementation under Stoichiometric and Lean Conditions,” SAE Int. J. Engines 7(2):595-605, 2014, doi:10.4271/2014-01-1220.
  3. Alger, T., Mangold, B., Roberts, C., and Gingrich, J. , “The Interaction of Fuel Anti-Knock Index and Cooled EGR on Engine Performance and Efficiency,” SAE Int. J. Engines 5(3):1229-1241, 2012, doi:10.4271/2012-01-1149.
  4. Bradley, D. , “Hot Spots and Gasoline Engine Knock, Journal of the Chemical Society,” Faraday Transactions 92:2959-2964, 1996, doi:10.1039/FT9969202959.
  5. Chen, L., Li, T., Yin, T., and Zheng, B. , “A Predictive Model for Knock Onset in Spark-Ignition Engines with Cooled EGR,” Energy Convers Manag 87:946-955, 2014, doi:10.1016/j.enconman.2014.08.002.
  6. Da Silva, R., Cataluña, R., de Menezes, E.W., Samios, D. et al. , “Effect of Additives on the Antiknock Properties and Reid Vapor Pressure of Gasoline,” Fuel 84:951-959, 2005, doi:/10.1016/j.fuel.2005.01.008.
  7. Grandin, B. and Denbratt, I. , “The Effect of Knock on Heat Transfer in SI Engines,” SAE Technical Paper 2002-01-0238 , 2002, doi:10.4271/2002-01-0238.
  8. Peyton Jones, J., Muske, K., Frey, J., and Scholl, D. , “A Stochastic Knock Control Algorithm,” SAE Technical Paper 2009-01-1017 , 2009, doi:10.4271/2009-01-1017.
  9. Vallinayagam, R., Vedharaj, S., Naser, N., Roberts, W.L. et al. , “Terpineol as a Novel Octane Booster for Extending the Knock Limit of Gasoline,” Fuel 187:9-15, 2017, doi:10.1016/j.fuel.2016.09.034.
  10. Caton, P., Hamilton, L., and Cowart, J. , “An Experimental and Modeling Investigation into the Comparative Knock and Performance Characteristics of E85, Gasohol [E10] and Regular Unleaded Gasoline [87 (R+M)/2],” SAE Technical Paper 2007-01-0473 , 2007, doi:10.4271/2007-01-0473.
  11. Khalil, S., Camal, R., Olivier, L., and Laurent, T. , “Description of Knock Limit in a CFR Engine: Effects of Engine Settings and Gas Quality,” SAE Technical Paper 2009-01-2620 , 2009, doi:10.4271/2009-01-2620.
  12. Lecointe, B. and Monnier, G. , “Downsizing a Gasoline Engine Using Turbocharging with Direct Injection,” SAE Technical Paper 2003-01-0542 , 2003, doi:10.4271/2003-01-0542.
  13. Leduc, P., Dubar, B., Ranini, A., and Monnier, G. , “Downsizing of Gasoline Engine: An Efficient Way to Reduce CO2 Emissions,” Oil Gas Sci. Technol. 58:115-127, 2003, doi:10.2516/ogst:2003008.
  14. Dahnz, C., Han, K., Spicher, U., Magar, M. et al. , “Investigations on Pre-Ignition in Highly Supercharged SI Engines,” SAE Int. J. Engines 3(1):214-224, 2010, doi:10.4271/2010-01-0355.
  15. Ranjith Kumar, T. and Yadav, A. , “New Control Strategies to Avoid Pre-Ignition in Higher CR Engines,” SAE Technical Paper 2016-28-0004 , 2016, doi:10.4271/2016-28-0004.
  16. Gupta, A., Shao, H., Remias, J., Roos, J. et al. , “Relative Impact of Chemical and Physical Properties of the Oil-Fuel Droplet on Pre-Ignition and Super-Knock in Turbocharged Gasoline Engines,” SAE Technical Paper 2016-01-2278, 2016, doi:10.4271/2016-01-2278.
  17. Kassai, M., Torii, K., Shiraishi, T., Noda, T. et al. , “Research on the Effect of Lubricant Oil and Fuel Properties on LSPI Occurrence in Boosted S. I. Engines,” SAE Technical Paper 2016-01-2292 , 2016, doi:10.4271/2016-01-2292.
  18. Mayer, M., Hofmann, P., Geringer, B., Williams, J. et al. , “Influence of Different Oil Properties on Low-Speed Pre-Ignition in Turbocharged Direct Injection Spark Ignition Engines,” SAE Technical Paper 2016-01-0718 , 2016, doi:10.4271/2016-01-0718.
  19. Qi, Y., Xu, Y., Wang, Z., and Wang, J. , “The Effect of Oil Intrusion on Super Knock in Gasoline Engine,” SAE Technical Paper 2014-01-1224 , 2014, doi:10.4271/2014-01-1224.
  20. Haenel, P., Kleeberg, H., de Bruijn, R., and Tomazic, D. , “Influence of Ethanol Blends on Low Speed Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines,” SAE Int. J. Fuels Lubr. 10(1):95-105, 2017, doi:10.4271/2017-01-0687.
  21. Wang, Z., Liu, H., Song, T., Qi, Y. et al. , “Relationship between Super-Knock and Pre-Ignition,” Int. J. Eng. Res. 16:166-180, 2015, doi:10.1177/1468087414530388.
  22. Heron, S. and Gillig, F. , “Supercharged Knock Testing,” 2nd World Petroleum Congress, World Petroleum Congress, 1937.
  23. Rothrock, A. M., Biermann, A. E. , “The Knocking Characteristics of Fuels in Relation to Maximum Permissible Performance of Aircraft Engines,” NACA Technical Report 655, 1939.
  24. Gao, Y. and Chen, Z. , “Autoignition and Detonation Development from a Hot Spot in Hydrogen/Air Mixture,” 26th ICDERS, Boston, MA.
  25. Wang, Z., Qi, Y., He, X., Wang, J. et al. , “Analysis of Pre-Ignition to Super-Knock: Hot Spot-Induced Deflagration to Detonation,” Fuel 144:222-227, 2014, doi:10.1016/j.fuel.2014.12.061.
  26. Kalghatgi, G., Bradley, D., Andrae, J., Harrison, A. , “The Nature of ‘superknock’and its Origins in SI Engines,” Proceedings of the Conference on Internal Combustion Engines: Performance, Fuel Economy and Emissions, London, UK, Dec. 9, 2009.
  27. Pan, J., Wei, H., Shu, G., and Chen, T. , “Effect of Pressure Wave Disturbance on Auto-Ignition Mode Transition and Knocking Intensity under Enclosed Conditions,” Combust. Flame 185:63-74, 2017, doi:10.1016/j.combustflame.2017.07.004.
  28. Bates, L. and Bradley, D. , “Deflagrative, Auto-Ignitive, and Detonative Propagation Regimes in Engines,” Combust. Flame 175:118-122, 2017, doi:10.1016/j.combustflame.2016.05.023.
  29. Bates, L., Bradley, D., Paczko, G., and Peters, N. , “Engine Hot Spots: Modes of Auto-Ignition and Reaction Propagation,” Combust. Flame 166:80-85, 2016, doi:10.1016/j.combustflame.2016.05.023.
  30. Sow, A., Lee, B.J., and Im, H.G. , “A Computational Study of the End Gas Autoignition and Shock Development by Flame Front and Local Hot Spot,” 26th ICDERS, Boston, MA, 2017.
  31. Javed, T., Badra, J., Jaasim, M., Es-Sebbar, E. et al. , “Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena,” Combust. Sci. Tech. 1138-1161, 2016, doi:10.1080/00102202.2016.1272599.
  32. Mubarak Ali, M., Hernandez Perez, F., Vedharaj, S., Vallinayagam, R. et al. , “Effect of Timing and Location of Hotspot on Super Knock during Pre-Ignition,” SAE Technical Paper 2017-01-0686 , 2017, doi:10.4271/2017-01-0686.
  33. Babajimopoulos, A., Assanis, D., Flowers, D., and Aceves, S. , “A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines,” Int. J. Eng.Res. 6:497-512, 2005, doi:10.1243/146808705X30503.
  34. Liu, Y.D., Jia, M., Xie, M.Z., and Pang, B. , “Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel with Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation,” Energy & Fuels 27:4899-4909, 2013, doi:10.1021/ef4009955.
  35. Richards, K., Senecal, P., and Pomraning, E. , CONVERGE 2.2.0 Theory Manual (Madison, WI: Convergent Science Inc., 2013).
  36. Im, H.G., Pal, P., Wooldridge, M.S., and Mansfield, A.B. , “A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations,” Combust Sci Technol 187:1263-1275, 2015, doi: 10.1080/00102202.2015.1034355.
  37. Bradley, D., Morley, C., Gu, X., and Emerson, D. , “Amplified Pressure Waves during Autoignition: Relevance to CAI Engines,” SAE Technical Paper 2002-01-2868 , 2002, doi:10.4271/2002-01-2868.
  38. Reitz, R. and Diwakar, R. , “Structure of High-Pressure Fuel Sprays,” SAE Technical Paper 870598 , 1987, doi:10.4271/870598.
  39. Reitz, R. and Diwakar, R. , “Effect of Drop Breakup on Fuel Sprays,” SAE Technical Paper 860469 , 1986, doi:10.4271/860469.
  40. Chumakov, S.G. and Rutland, C.J. , “Dynamic Structure Subgrid-Scale Models for Large Eddy Simulation,” Int J Numer Methods Fluids 47:911-923, 2005, doi:10.1002/fld.907.

Cited By