This content is not included in your SAE MOBILUS subscription, or you are not logged in.
The Recuperated Split Cycle - Experimental Combustion Data from a Single Cylinder Test Rig
Journal Article
2017-24-0169
ISSN: 1946-3936, e-ISSN: 1946-3944
Sector:
Citation:
Morgan, R., Jackson, N., Atkins, A., dong, G. et al., "The Recuperated Split Cycle - Experimental Combustion Data from a Single Cylinder Test Rig," SAE Int. J. Engines 10(5):2596-2605, 2017, https://doi.org/10.4271/2017-24-0169.
Language:
English
References
- Stanton, D., "Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations," SAE Int. J. Engines 6(3):1395-1480, 2013, doi:10.4271/2013-01-2421.
- Automotive Council UK Roadmap. 2013; Available from: http://www.automotivecouncil.co.uk/2013/09/automotive-technology-roadmaps/. Accessed 7/6/2017
- Reitz, R.D. and Duraisamy G., Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 2015. 46: p. 12-71.
- Lam, N., Tuner, M., Tunestal, P., Andersson, A. et al., "Double Compression Expansion Engine Concepts: A Path to High Efficiency," SAE Int. J. Engines 8(4):1562-1578, 2015, doi:10.4271/2015-01-1260.
- Abani, N., Nagar, N., Zermeno, R., chiang, M. et al., "Developing a 55% BTE Commercial Heavy-Duty Opposed-Piston Engine without a Waste Heat Recovery System," SAE Technical Paper 2017-01-0638, 2017, doi:10.4271/2017-01-0638.
- Coney, M.W., Linnemann C., and Abdallah H.S., A thermodynamic analysis of a novel high efficiency reciprocating internal combustion engine-the isoengine. Energy, 2004. 29(12-15): p. 2585-2600.
- Jackson N.S., Atkins, A., Ricardo UK Ltd. Split Cycle Reciprocating Piston Engine. US Patent 8,662,060
- Dong, G., Morgan R., and Heikal M., A novel split cycle internal combustion engine with integral waste heat recovery. Applied Energy, 2015. 157: p. 744-753.
- Dong, G., Morgan R.E., and Heikal M.R., Thermodynamic analysis and system design of a novel split cycle engine concept. Energy, 2016. 102: p. 576-585.
- Phillips, F., Gilbert, I., Pirault, J., and Megel, M., "Scuderi Split Cycle Research Engine: Overview, Architecture and Operation," SAE Int. J. Engines 4(1):450-466, 2011, doi:10.4271/2011-01-0403.
- Coney, M.W., Stephenson, P., Malmgren, A. Linnemann, C. Morgan R.E., Development of a reciprocating compressor using water injection to achieve quasi isothermal compression, in Internaltional compressor engineering conference. 2002, Purdue Uniersity: Purdue.
- Coney, M.W., Linnemann, C., Sugiura, K, Goto, T., Isoengine data analysis and future design options, in CIMAC Congress. 2004, CIMAC: Kyoto.
- Jackson N.S., Atkins, A., Morgan R., An altnerative thermodynamic cycle for resiproacting piston engines, in 36th Vienna Motor Symposium. 2015: Vienna.
- F.Shabir, M., Authars, S., Ganesan, S., Karthik, R. et al., "Low Heat Rejection Engines - Review," SAE Technical Paper 2010-01-1510, 2010, doi:10.4271/2010-01-1510.
- Meldolesi, R., Bailey, G., Lacy, C., Gilbert, I. et al., "Scuderi Split Cycle Fast Acting Valvetrain: Architecture and Development," SAE Int. J. Engines 4(1):467-481, 2011, doi:10.4271/2011-01-0404.
- AMESim. Mentor Graphics.
- WAVE, Ricardo Softwere
- Morgan, R., Banks, A., Auld, A., Heikal, M. et al., "The Benefits of High Injection Pressure on Future Heavy Duty Engine Performance," SAE Technical Paper 2015-24-2441, 2015, doi:10.4271/2015-24-2441.