This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Recuperated Split Cycle - Experimental Combustion Data from a Single Cylinder Test Rig

Journal Article
ISSN: 1946-3936, e-ISSN: 1946-3944
Published September 04, 2017 by SAE International in United States
The Recuperated Split Cycle - Experimental Combustion Data from a Single Cylinder Test Rig
Citation: Morgan, R., Jackson, N., Atkins, A., dong, G. et al., "The Recuperated Split Cycle - Experimental Combustion Data from a Single Cylinder Test Rig," SAE Int. J. Engines 10(5):2596-2605, 2017,
Language: English


  1. Stanton, D., "Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations," SAE Int. J. Engines 6(3):1395-1480, 2013, doi:10.4271/2013-01-2421.
  2. Automotive Council UK Roadmap. 2013; Available from: Accessed 7/6/2017
  3. Reitz, R.D. and Duraisamy G., Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 2015. 46: p. 12-71.
  4. Lam, N., Tuner, M., Tunestal, P., Andersson, A. et al., "Double Compression Expansion Engine Concepts: A Path to High Efficiency," SAE Int. J. Engines 8(4):1562-1578, 2015, doi:10.4271/2015-01-1260.
  5. Abani, N., Nagar, N., Zermeno, R., chiang, M. et al., "Developing a 55% BTE Commercial Heavy-Duty Opposed-Piston Engine without a Waste Heat Recovery System," SAE Technical Paper 2017-01-0638, 2017, doi:10.4271/2017-01-0638.
  6. Coney, M.W., Linnemann C., and Abdallah H.S., A thermodynamic analysis of a novel high efficiency reciprocating internal combustion engine-the isoengine. Energy, 2004. 29(12-15): p. 2585-2600.
  7. Jackson N.S., Atkins, A., Ricardo UK Ltd. Split Cycle Reciprocating Piston Engine. US Patent 8,662,060
  8. Dong, G., Morgan R., and Heikal M., A novel split cycle internal combustion engine with integral waste heat recovery. Applied Energy, 2015. 157: p. 744-753.
  9. Dong, G., Morgan R.E., and Heikal M.R., Thermodynamic analysis and system design of a novel split cycle engine concept. Energy, 2016. 102: p. 576-585.
  10. Phillips, F., Gilbert, I., Pirault, J., and Megel, M., "Scuderi Split Cycle Research Engine: Overview, Architecture and Operation," SAE Int. J. Engines 4(1):450-466, 2011, doi:10.4271/2011-01-0403.
  11. Coney, M.W., Stephenson, P., Malmgren, A. Linnemann, C. Morgan R.E., Development of a reciprocating compressor using water injection to achieve quasi isothermal compression, in Internaltional compressor engineering conference. 2002, Purdue Uniersity: Purdue.
  12. Coney, M.W., Linnemann, C., Sugiura, K, Goto, T., Isoengine data analysis and future design options, in CIMAC Congress. 2004, CIMAC: Kyoto.
  13. Jackson N.S., Atkins, A., Morgan R., An altnerative thermodynamic cycle for resiproacting piston engines, in 36th Vienna Motor Symposium. 2015: Vienna.
  14. F.Shabir, M., Authars, S., Ganesan, S., Karthik, R. et al., "Low Heat Rejection Engines - Review," SAE Technical Paper 2010-01-1510, 2010, doi:10.4271/2010-01-1510.
  15. Meldolesi, R., Bailey, G., Lacy, C., Gilbert, I. et al., "Scuderi Split Cycle Fast Acting Valvetrain: Architecture and Development," SAE Int. J. Engines 4(1):467-481, 2011, doi:10.4271/2011-01-0404.
  16. AMESim. Mentor Graphics.
  17. WAVE, Ricardo Softwere
  18. Morgan, R., Banks, A., Auld, A., Heikal, M. et al., "The Benefits of High Injection Pressure on Future Heavy Duty Engine Performance," SAE Technical Paper 2015-24-2441, 2015, doi:10.4271/2015-24-2441.

Cited By