This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Preliminary Investigation of a Bio-Based Low Sulfur Heavy Fuel Oil
Technical Paper
2017-24-0114
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Recently introduced sulfur caps on marine fuels in so-called sulfur emission control areas (SECAs) are forcing shipping companies to sail on more or less automotive grade diesel in lieu of the considerably less expensive, but sulfur-laden heavy fuel oil (HFO) to which they were accustomed. This development is an opportunity for a bio-based substitute, given that most biomass is sulfur free by default. Moreover, given that biomass is typically solid to start with, cracking it to an HFO grade, which is highly viscous in nature, will involve fewer and/or less harsh process steps than would be the case if an automotive grade fuel were to be targeted. In this study, a renewable low sulfur heavy fuel oil (LSHFO) has been produced by means of subcritical water assisted lignin depolymerization in the presence of a short length surfactant, ethylene glycol monobutyl ether (EGBE). The resulting oil contains a lignin derived content of 75 wt.-%, with the remainder consisting of EGBE and water (reusable). The derived LSHFO has a 20% higher heating value than the lignin feedstock. It is still roughly 20% and 30% lower when compared to the HFO and low sulfur marine gas oil (LSMGO) benchmarks, respectively. The lower heating value can be attributed to the fuel bond oxygen (10%) and water present in the LSHFO. Viscosity and sulfur levels, however, are within the HFO and LSMGO range and target respectively. Future work will examine what impact lignin particle size and surfactant type/concentration will have on the results.
Graphical abstract

Authors
Citation
Cuijpers, M., Golombok, M., Van Avendonk, H., and Boot, M., "Preliminary Investigation of a Bio-Based Low Sulfur Heavy Fuel Oil," SAE Technical Paper 2017-24-0114, 2017, https://doi.org/10.4271/2017-24-0114.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Cordtz , R. , Schramm , J. , Andreasen , A. , Eskildsen , S.S. , and Mayer , S. Modeling the distribution of sulfur compounds in a large two stroke diesel engine Energy and Fuels 27 3 1652 1660 2013 10.1021/ef301793a
- Zhao , Y. , Lu , W.J. , Wang , H.T. , and Yang , J.L. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology Bioresour. Technol. 100 23 5884 5889 2009 10.1016/j.biortech.2009.06.079
- Kleinert , M. and Barth , T. Towards a lignincellulosic biorefinery: Direct one-step conversion of lignin to hydrogen-enriched biofuel Energy and Fuels 22 2 1371 1379 2008 10.1021/ef700631w
- Pacsi , A.P. , Alhajeri , N.S. , Zavala-Araiza , D. , Webster , M.D. , and Allen , D.T. Regional air quality impacts of increased natural gas production and use in texas Environ. Sci. Technol. 47 7 3521 3527 2013 10.1021/es3044714
- Piskorz , J. , Majerski , P. , Radlein , D. , and Scott , D.S. Conversion of lignins to hydrocarbon fuels Energy Fuels 3 6 723 726 1989 10.1021/ef00018a011
- Oasmaa , A. and Johansson , A. Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst Energy and Fuels 7 8 426 429 1993 10.1021/ef00039a015
- Belkheiri , T. , Mattsson , C. , Andersson , S.-I. , Olausson , L. , Åmand , L.-E. , Theliander , H. , and Vamling , L. Effect of pH on Kraft Lignin Depolymerisation in Subcritical Water Energy & Fuels 30 6 4916 4924 2016 10.1021/acs.energyfuels.6b00462
- Onwudili , J. a. and Williams , P.T. Catalytic depolymerization of alkali lignin in subcritical water: influence of formic acid and Pd/C catalyst on the yields of liquid monomeric aromatic products Green Chem. 16 4740 4748 2014 10.1039/C4GC00854E
- Yong , T.L.K. and Matsumura , Y. Kinetic analysis of lignin hydrothermal conversion in sub- and supercritical water Ind. Eng. Chem. Res. 52 16 5626 5639 2013 10.1021/ie400600x
- Pińkowska , H. , Wolak , P. , and Złocińska , A. Hydrothermal decomposition of alkali lignin in sub- and supercritical water Chem. Eng. J. 187 410 414 2012 10.1016/j.cej.2012.01.092
- Kim , K.H. , Brown , R.C. , and Bai , X. Hydrogen-Donor-Assisted Solvent Liquefaction of Lignin to Short- Chain Alkylphenols Using a Micro Reactor/Gas Chromatography System 28 10 6429 6437 2014 10.1021/ef501678w
- Ye , Y. , Fan , J. , and Chang , J. Effect of reaction conditions on hydrothermal degradation of cornstalk lignin J. Anal. Appl. Pyrolysis 94 190 195 2012 10.1016/j.jaap.2011.12.005
- Jiang , W. , Lyu , G. , Liu , Y. , Wang , C. , Chen , J. , and Lucia , L.A. Quantitative Analyses of Lignin Hydrothermolysates from Subcritical Water and Water - Ethanol Systems Ind. Eng. Chem. Res. 53 25 10328 10334 2014
- Savy , D. , Mazzei , P. , Roque , R. , Nuzzo , A. , Bowra , S. , and Santos , R. Structural recognition of lignin isolated from bioenergy crops by subcritical water: Ethanol extraction Fuel Process. Technol. 138 637 644 2015 10.1016/j.fuproc.2015.07.004
- Mazaheri , H. , Lee , K.T. , Bhatia , S. , and Mohamed , A.R. Bioresource Technology Subcritical water liquefaction of oil palm fruit press fiber in the presence of sodium hydroxide?: An optimisation study using response surface methodology Bioresour. Technol. 101 23 9335 9341 2010 10.1016/j.biortech.2010.07.004
- Goto , M. , Obuchi , R. , Hirose , T. , Sakaki , T. , and Shibata , M. Hydrothermal conversion of municipal organic waste into resources Bioresour. Technol. 93 3 279 284 2004 10.1016/j.biortech.2003.11.017
- Saisu , M. , Sato , T. , Watanabe , M. , Adschiri , T. , and Arai , K. Conversion of Lignin with Supercritical Water - Phenol Mixtures Energy & Fuels 4 17 922 928 2003
- Watchararuji , K. , Goto , M. , Sasaki , M. , and Shotipruk , A. Value-added subcritical water hydrolysate from rice bran and soybean meal 99 6207 6213 2008 10.1016/j.biortech.2007.12.021
- Golombok , M. and Ineke , E. Oil mobilisation by subcritical water processing J. Pet. Explor. Prod. Technol. 3 4 255 263 2013 10.1007/s13202-013-0066-x
- Mahmood , N. , Yuan , Z. , Schmidt , J. , and Xu , C. Hydrolytic depolymerization of hydrolysis lignin: Effects of catalysts and solvents Bioresour. Technol. 190 416 419 2015 10.1016/j.biortech.2015.04.074
- Gosselink , R.J.A. , Teunissen , W. , Dam , J.E.G. van , Jong , E. de , Gellerstedt , G. , Scott , E.L. , and Sanders , J.P.M. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals Bioresour. Technol. 106 173 177 2012 10.1016/j.biortech.2011.11.121
- Shpakoff , P.G. and Raney , K.H. Method and composition for enhanced hydrocarbons recovery U.S. Patent No. 7,055,602. Washington, DC U.S. 2006
- Dwarakanath , V. , Campbell , C.B. , Chaturvedi , T. , Denslow , T.A. , Jackson , A. , Malik , T. , and Thach , S. Method for enhancing oil recovery with an improved oil recovery surfactant U.S. Patent No. 7,770,641. Washington, DC U.S. 2010
- Boeriu , C.G. , Bravo , D. , Gosselink , R.J.A. , and Dam , J.E.G. Van Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy Ind. Crops Prod. 20 2 205 218 2004 10.1016/j.indcrop.2004.04.022