This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Surrogate Model for Oxygenated Wide-Distillation Fuel with Polyoxymethylene Dimethyl Ether

Journal Article
ISSN: 1946-3952, e-ISSN: 1946-3960
Published October 08, 2017 by SAE International in United States
Development of Surrogate Model for Oxygenated Wide-Distillation Fuel with Polyoxymethylene Dimethyl Ether
Citation: He, T., Liu, H., Wang, Y., Wang, B. et al., "Development of Surrogate Model for Oxygenated Wide-Distillation Fuel with Polyoxymethylene Dimethyl Ether," SAE Int. J. Fuels Lubr. 10(3):2017,
Language: English


  1. Lumpp B., Rothe D., Pastötter C., Lämmermann R., Jacob E., Oxymethylene Ethers as Diesel Fuel Additives of the Future, MTZ World. 72 (2011) 34-38.
  2. Hartl M., Seidenspinner P., Jacob E., Wachtmeister G., Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1, Fuel. 153 (2015) 328-335.
  3. Liu H., Wang Z., Wang J., He X., Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends, Energy. 97 (2016) 105-112.
  4. Wang Z., Liu H., Ma X., Wang J., Shuai S., Reitz R.D., Homogeneous charge compression ignition (HCCI) combustion of polyoxymethylene dimethyl ethers (PODE), Fuel. 183 (2016) 206-213.
  5. Zheng Y., Tang Q., Wang T., Liao Y., Wang J., Synthesis of a Green Fuel Additive Over Cation Resins, Chem. Eng. Technol. 36 (2013) 1951-1956.
  6. EN 590 Automotive fuels - Diesel - Requirements and test methods, (2014).
  7. Sanfilippo D., Patrini R., Marchionna M.. Use of an oxygenated product as a substitute of gas oil in diesel engines. CA 2449331 C, (2011).
  8. Fleisch T.H., Sills R.A., Large-scale gas conversion through oxygenates: beyond GTL-FT, Stud. Surf. Sci. Catal. 147 (2004) 31-36.
  9. Pellegrini, L., Marchionna, M., Patrini, R., Beatrice, C. et al., "Combustion Behaviour and Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in a Light-Duty Diesel Engine," SAE Technical Paper 2012-01-1053, 2012, doi:10.4271/2012-01-1053.
  10. Pellegrini, L., Marchionna, M., Patrini, R., and Florio, S., "Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in an Old Light-Duty Diesel Car," SAE Technical Paper 2013-01-1035, 2013, doi:10.4271/2013-01-1035.
  11. Pellegrini, L., Patrini, R., and Marchionna, M., "Effect of POMDME Blend on PAH Emissions and Particulate Size Distribution from an In-Use Light-Duty Diesel Engine," SAE Technical Paper 2014-01-1951, 2014, doi:10.4271/2014-01-1951.
  12. Liu, H., Wang, Z., and Wang, J., "Performance, Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE3-4)/ Wide Distillation Fuel (WDF) Blends in Premixed Low Temperature Combustion (LTC)," SAE Int. J. Fuels Lubr. 8(2):298-306, 2015, doi:10.4271/2015-01-0810.
  13. Wang J., Wang Z., Wide distillation fuel and unified internal combustion engines, in: Fundam. Sci. Theory Key Technol. Greenh. Control Intern. Combust. Engine Conf. Shanghai, (2010).
  14. Wang J., Wang Z., Liu H., Combustion and emission characteristics of direct injection compression ignition engine fueled with Full Distillation Fuel (FDF), Fuel. 140 (2015) 561-567.
  15. Turner D., Tian G., Xu H., Wyszynski M.L., Theodoridis E., An Experimental Study of Dieseline Combustion in a Direct Injection Engine, Int. J. Hydrogen Energy. 34 (2009) 6516-6522.
  16. Chao Y., Wang J.X., Zhi W., Shuai S.J., Comparative study on Gasoline Homogeneous Charge Induced Ignition (HCII) by diesel and Gasoline/Diesel Blend Fuels (GDBF) combustion, Fuel. 106 (2013) 470-477.
  17. Kalghatgi G.T., The outlook for fuels for internal combustion engines, Int. J. Engine Res. 15 (2014) 383-398.
  18. Sun W., Wang G., Li S., Zhang R., Yang B., Yang J., et al., Speciation and the laminar burning velocities of poly(oxymethylene) dimethyl ether 3 (POMDME 3 ) flames: An experimental and modeling study, Proc. Combust. Inst. 36 (2017) 1269-1278.
  19. Edgar, B., Dibble, R., and Naegeli, D., "Autoignition of Dimethyl Ether and Dimethoxy Methane Sprays at High Pressures," SAE Technical Paper 971677, 1997, doi:10.4271/971677.
  20. Curran H.J., Pitz W.J., Westbrook C.K., Dagaut P., Boettner J.-C., Cathonnet M., A Wide Range Modeling Study of Dimethyl Ether Oxidation, Int. J. Chem. Kinet. 30 (1998) 229-241.
  21. Fischer S.L., Dryer F.L., Curran H.J., The Reaction Kinetics of Dimethyl Ether. I: High Temperature Pyrolysis and Oxidation in Flow Reactors, Int. J. Chem. Kinet. 32 (2000) 713-740.
  22. Curran H.J., Fischer S.L., Dryer F.L., Reaction kinetics of dimethyl ether. II: low-temperature oxidation in flow reactors, Int. J. Chem. Kinet. 32 (2000) 741-759.
  23. Zhao Z., Chaos M., Kazakov A., Dryer F.L., Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether, Int. J. Chem. Kinet. 40 (2008) 1-18.
  24. Liu D., Santner J., Togbe C., Felsmann D., Koppmann J., Lackner A., et al., Flame structure and kinetic studies of carbon dioxide-diluted dimethyl ether flames at reduced and elevated pressures, Combust. Flame. 160 (2013) 2654-2668.
  25. Burke U., Somers K.P., O’Toole P., Zinner C.M., Marquet N., Bourque G., et al., An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures, Combust. Flame. 162 (2015) 315-330.
  26. Rodriguez A., Frottier O., Herbinet O., Fournet R., Bounaceur R., Fittschen C., et al., Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether, J. Phys. Chem. A. 119 (2015) 7905-7923.
  27. Daly C.A., Simmie J.M., Dagaut P., Cathonnet M., Oxidation of dimethoxymethane in a jet-stirred reactor, Combust. Flame. 125 (2001) 1106-1117.
  28. Dias V., Lories X., Vandooren J., Lean and Rich Premixed Dimethoxymethane/Oxygen/Argon Flames: Experimental and Modeling, Combust. Sci. Technol. 182 (2010) 350-364.
  29. Dias V., Vandooren J., Experimental and modeling studies of C2H4/O2/Ar, C2H4/methylal/O2/Ar and C2H4/ethylal/O2/Ar rich flames and the effect of oxygenated additives, Combust. Flame. 158 (2011) 848-859.
  30. Glaude P.A., Pitz W.J., Thomson M.J., Chemical kinetic modeling of dimethyl carbonate in an opposed-flow diffusion flame, Proc. Combust. Inst. 30 (2005) 1111-1118.
  31. Ren S., Kokjohn S.L., Wang Z., Liu H., Wang B., Wang J., A Multi-Component Wide Distillation Fuel (Covering Gasoline, Jet and Diesel) Mechanism for Combustion and PAH Prediction, Fuel, Submitted.
  32. Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K., A Comprehensive Modeling Study of n-Heptane Oxidation, Combust. Flame. 114 (1998) 149-177.
  33. Sarathy S.M., Westbrook C.K., Mehl M., Pitz W.J., Togbe C., Dagaut P., et al., Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20, Combust. Flame. 158 (2011) 2338-2357.
  34. Villano S.M., Huynh L.K., Carstensen H.-H., Dean A.M., High-Pressure Rate Rules for Alkyl + O 2 Reactions. 1. The Dissociation, Concerted Elimination, and Isomerization Channels of the Alkyl Peroxy Radical, J. Phys. Chem. A. 115 (2011) 13425-13442.
  35. Yasunaga K., Gillespie F., Simmie J.M., Curran H.J., Kuraguchi Y., Hoshikawa H., et al., A Multiple Shock Tube and Chemical Kinetic Modeling Study of Diethyl Ether Pyrolysis and Oxidation, J. Phys. Chem. A. 114 (2010) 9098-9109.
  36. Sun W., Yang B., Hansen N., Westbrook C.K., Zhang F., Wang G., et al., An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion, Combust. Flame. 164 (2016) 224-238.
  37. Dooley S., Chaos M., Burke M.P., Stein Y., Dryer F.L., Daly C.A., et al., An experimental and kinetic modeling study of methyl formate low-pressure flames, in: Proc. Eur. Combust. Meet., 2009.
  38. Wijaya C.D., Sumathi R., Green W.H., Thermodynamic Properties and Kinetic Parameters for Cyclic Ether Formation from Hydroperoxyalkyl Radicals, J. Phys. Chem. A. 107 (2003) 4908-4920.
  39. Frisch M.J., Trucks G.W., Schlegel H.B., et al. GAUSSIAN 09, Gaussian, Inc., Wallingford, CT. 2009.
  40. Leach A.R., Molecular Modelling: Principles and Applications, Prentice Hall Harlow UK, (2001).
  41. Becke A., Density Functional Thermochemistry III The Role of Exact Exchange, J. Chem. Phys. 98 (1993) 5648-5652.
  42. Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 37 (1988) 785-789.
  43. Montgomery J.A., Frisch M.J., Ochterski J.W., Petersson G. a., A complete basis set model chemistry. VI. Use of density functional geometries and frequencies, J. Chem. Phys. 110 (1999) 2822-2827.
  44. Glowacki D.R., Liang C.H., Morley C., Pilling M.J., Robertson S.H., MESMER: An open-source master equation solver for Multi-Energy well reactions, J. Phys. Chem. A. 116 (2012) 9545-9560.
  45. Robertson S.H., Glowacki D.R., Liang C.H., et al. MESMER (Master Equation Solver for Multi-Energy Well Reactions), 2008-2013; an object oriented C++ program implementing master equation methods for gas phase reactions with arbitrary multiple wells.
  46. Sharma S., Ramans S., Green W.H., Intramolecular hydrogen migration in alkylperoxy and hydroperoxyalkylperoxy radicals: Accurate treatment of hindered rotors, J. Phys. Chem. A. 114 (2010) 5689-5701.
  47. Zheng J., Yu T., Papajak E., Alecu I.M., Mielke S.L., Truhlar D.G., Practical methods for including torsional anharmonicity in thermochemical calculations on complex molecules: The internal-coordinate multi-structural approximation, Phys. Chem. Chem. Phys. 13 (2011) 10885-10907.
  48. Yu T., Zheng J., Truhlar D.G., Multi-structural variational transition state theory. Kinetics of the 1,4-hydrogen shift isomerization of the pentyl radical with torsional anharmonicity, Chem. Sci. 2 (2011) 2199.
  49. Zhao Y., Truhlar D.G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function, Theor. Chem. Acc. 120 (2008) 215-241.
  50. Weigend F., Ahlrichs R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7 (2005) 3297.
  51. Alecu I.M., Zheng J., Zhao Y., Truhlar D.G., Computational thermochemistry: Scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries, J. Chem. Theory Comput. 6 (2010) 2872-2887.
  52. Adler T.B., Knizia G., Werner H.-J., A simple and efficient CCSD(T)-F12 approximation, J. Chem. Phys. 127 (2007) 221106.
  53. Knizia G., Adler T.B., Werner H.-J., Simplified CCSD(T)-F12 methods: Theory and benchmarks, J. Chem. Phys. 130 (2009) 54104.
  54. Dunning T.H., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys. 90 (1989) 1007-1023.
  55. Kendall R.A., Dunning T.H., Harrison R.J., Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys. 96 (1992) 6796-6806.
  56. Woon D.E., Dunning T.H., Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, J. Chem. Phys. 98 (1993) 1358-1371.
  57. Davidson E.R., Comment on “Comment on Dunning’s correlation-consistent basis sets,” Chem. Phys. Lett. 260 (1996) 514-518.
  58. Zheng J., Mielke S.L., Clarkson K.L., Truhlar D.G., MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity, Comput. Phys. Commun. 183 (2012) 1803-1812.
  59. Zheng J., Meana-Pañeda R., Truhlar D.G., MSTor version 2013: A new version of the computer code for the multi-structural torsional anharmonicity, now with a coupled torsional potential, Comput. Phys. Commun. 184 (2013) 2032-2033.
  60. Wang J., A method for producing polyoxymethylene dimethyl ethers, CN 201410128524.9, (2014).
  61. Wang J., Fluidized bed reactor and method for preparing polyxymethylene dimethyl ethers from dimethyoxymethane and paraformaldehyde, CN 201410146196.5, (2014).
  62. Design R., Chemkin-Pro 15101, React. Des. San Diego, CA. (2010).
  63. Richards K.J., Senecal P.K., Pomraning E., CONVERGE, Madison, WI: Convergent Science Inc., (2014).
  64. Senecal, P., Pomraning, E., Richards, K., Briggs, T. et al., "Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry," SAE Technical Paper 2003-01-1043, 2003, doi:10.4271/2003-01-1043.
  65. HAN Z., REITZ R.D., Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models, Combust. Sci. Technol. 106 (1995) 267-295.
  66. Heywood John B, Internal Combustion Engine Fundamentals, McGraw Hill Int. Ed. 5 (1988) 491-566.
  67. Hiroyasu, H. and Kadota, T., "Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines," SAE Technical Paper 760129, 1976, doi:10.4271/760129.
  68. Nagle J., Strickland-Constable R.F., OXIDATION OF CARBON BETWEEN 1000-2000°C, in: Proc. Fifth Conf. Carbon, Elsevier, 1962: pp. 154-164.
  69. Reitz R.D., Bracco F. V., Mechanisms of breakup of round liquid jets, Encycl. Fluid Mech. 3 (1986) 233-249.
  70. Ricart, L., Xin, J., Bower, G., and Reitz, R., "In-Cylinder Measurement and Modeling of Liquid Fuel Spray Penetration in a Heavy-Duty Diesel Engine," SAE Technical Paper 971591, 1997, doi:10.4271/971591.
  71. Xin J., Ricart L., Reitz R.D., Computer Modeling of Diesel Spray Atomization and Combustion, Combust. Sci. Technol. 137 (1998) 171-194.
  72. Schmidt D.P., Rutland C.J., A New Droplet Collision Algorithm, J. Comput. Phys. 164 (2000) 62-80.
  73. Gonzalez D., M., Lian, Z., and Reitz, R., "Modeling Diesel Engine Spray Vaporization and Combustion," SAE Technical Paper 920579, 1992, doi:10.4271/920579.
  74. Amsden A.A., O’Rourke P.J., Butler T.D., KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays, La-11560-Ms. (1989).
  75. Di H., He X., Zhang P., Wang Z., Wooldridge M.S., Law C.K., et al., Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane, Combust. Flame. 161 (2014) 2531-2538.
  76. Ji W., Zhang P., He T., Wang Z., Tao L., He X., et al., Intermediate species measurement during iso-butanol auto-ignition, Combust. Flame. 162 (2015) 3541-3553.
  77. Zhang P., Ji W., He T., He X., Wang Z., Yang B., et al., First-stage ignition delay in the negative temperature coefficient behavior: Experiment and simulation, Combust. Flame. 167 (2016) 14-23.
  78. Lee T.J., Taylor P.R., A diagnostic for determininig the quality of single-reference electron correlation methods., Int. J. Quantum Chem. 23 (1989) 199-207.
  79. Purvis G.D., Bartlett R.J., A full coupled-cluster singles and doubles model: The inclusion of disconnected triples, J. Chem. Phys. 76 (1982) 1910-1918.
  80. Pople J.A., Head-Gordon M., Raghavachari K., Quadratic configuration interaction. A general technique for determining electron correlation energies, J. Chem. Phys. 87 (1987) 5968-5975.
  81. Rienstra-Kiracofe J.C., Allen W.D., Schaefer H.F., The C 2 H 5 + O 2 Reaction Mechanism: High-Level ab Initio Characterizations, J. Phys. Chem. A. 104 (2000) 9823-9840.
  82. Peiró-García J., Nebot-Gil I., Ab Initio Study of the Mechanism and Thermochemistry of the Atmospheric Reaction NO + O 3 → NO 2 + O 2, J. Phys. Chem. A. 106 (2002) 10302-10310.
  83. Lambert N., Kaltsoyannis N., Price S.D., Žabka J., Herman Z., Bond-Forming Reactions of Dications with Molecules: A Computational and Experimental Study of the Mechanisms for the Formation of HCF2+ from CF32+ and H2, J. Phys. Chem. A. 110 (2006) 2898-2905.
  84. Zheng J., Truhlar D.G., Multi-path variational transition state theory for chemical reaction rates of complex polyatomic species: ethanol + OH reactions, Faraday Discuss. 157 (2012) 59.

Cited By