This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Critical Assessment of Some Popular Scale-Resolving Turbulence Models for Vehicle Aerodynamics

Journal Article
2017-01-1532
ISSN: 1946-3995, e-ISSN: 1946-4002
Published March 28, 2017 by SAE International in United States
Critical Assessment of Some Popular Scale-Resolving Turbulence Models for Vehicle Aerodynamics
Sector:
Citation: Jakirlic, S., Kutej, L., Unterlechner, P., and Tropea, C., "Critical Assessment of Some Popular Scale-Resolving Turbulence Models for Vehicle Aerodynamics," SAE Int. J. Passeng. Cars - Mech. Syst. 10(1):235-250, 2017, https://doi.org/10.4271/2017-01-1532.
Language: English

References

  1. Ashton, N. and Revell, A., 2015a, “Key factors in the use of DDES for the flow around a simplified car”, Int. J. of Heat and Fluid Flow, Vol. 51, pp. 175-194, DOI:10.1016/j.ijheatfluidflow.2015.06.002
  2. Ashton, N. and Revell, A., "Comparison of RANS and DES Methods for the DrivAer Automotive Body," SAE Technical Paper 2015-01-1538, 2015, DOI:10.4271/2015-01-1538.
  3. Basara, B., 2006, “An Eddy Viscosity Transport Model Based on Elliptic Relaxation Approach”, AIAA Journal, Vol. 44, pp. 1686-1690, DOI:10.2514/1.20739
  4. Basara, B., Krajnovic, S., Girimaji, S. and Pavlovic, Z., 2011. Near-Wall Formulation of the Partially Averaged Navier–Stokes Turbulence Model. AIAA Journal, Vol. 49(12), pp. 2627-2636, DOI:10.2514/1.J050967
  5. Chang, C.-Y., Jakirlic, S., Dietrich, K., Basara, B. and Tropea, C., 2014, “Swirling flow in a tube with variably-shaped outlet orifices: an LES and VLES study”, Int. J. of Heat and Fluid Flow, Vol. 49, pp. 28-42, DOI:10.1016/j.ijheatfluidflow.2014.05.008
  6. Chang, C.-Y., Jakirlić, S., Krumbein, B. and Tropea, C., 2015, “A novel VLES model for turbulent flow simulations”, 9th Int. Symposium on Turbulence and Shear Flow Phenomena (TSFP9), Melbourne, Australia, June 30 – July 3
  7. Chang, C.-Y., Jakirlić, S., Basara, B. and Tropea, C., 2015, “Predictive capability assessment of the PANS- model of turbulence. Part I: physical rationale by reference to wall-bounded flows including separation (pp. 371-383, DOI:10.1007/978-3-319-15141-0_30) and Part II: application to swirling and tumble/mean-compression flows (pp. 385-398, DOI:10.1007/978-3-319-15141-0_31). In ‘Advances in Hybrid RANS-LES Modelling 5’. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 130, Girimaji S., . (Eds.), Springer Verlag
  8. Frank, T., Gerlicher, B. and Abanto, J., 2013, „DrivAer -Aerodynamic Investigations for a New Realistic Generic Car Model using ANSYS CFD”, Automotive Simulation World Congress, October, 2013, Frankfurt, Germany
  9. Girimaji, S.S., 2006, “Partially-Averaged Navier-Stokes Model for Turbulence: A Reynolds-Averaged Navier-Stokes to Direct Numerical Simulation Bridging Method,” ASME Journal of Applied Mechanics, Vol. 73, pp. 413-421, DOI:10.1115/1.2151207
  10. Guilmineau, E., "Numerical Simulations of Flow around a Realistic Generic Car Model," SAE Int. J. Passeng. Cars - Mech. Syst. 7(2): 646-653, 2014, DOI:10.4271/2014-01-0607.
  11. Gaylard, A., Oettle, N., Gargoloff, J., and Duncan, B., "Evaluation of Non-Uniform Upstream Flow Effects on Vehicle Aerodynamics," SAE Int. J. Passeng. Cars - Mech. Syst. 7(2): 692-702, 2014, DOI:10.4271/2014-01-0614.
  12. Han, X., Krajnovic, S. and Basara, B., 2013, „Study of active flow control for a simplified vehicle model using the PANS method, Int. J. of Heat and Fluid Flow, Vol. 42, pp. 139-150, DOI:10.1016/j.ijheatfluidflow.2013.02.001
  13. Hanjalic, K., Popovac, M. and Hadziabdic, M., 2004, “A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD”, Int. J. of Heat and Fluid Flow, Vol. 25., pp. 1047-1051, DOI:10.1016/j.ijheatfluidflow.2004.07.005
  14. Jakirlic, S., Kutej, L., Basara, B., and Tropea, C., "Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches," SAE Int. J. Passeng. Cars - Mech. Syst. 7(2):559-574, 2014, DOI:10.4271/2014-01-0594.
  15. Jakirlic, S. and Maduta, R., 2015, “Extending the bounds of “steady” RANS closures: towards an instability-sensitive Reynolds stress model”, Int. J. of Heat and Fluid Flow, Vol. 51, pp. 175-194, DOI:10.1016/j.ijheatfluidflow.2014.09.003
  16. Jakirlić, S., Kutej, L., Basara, B. and Tropea, C., 2016a: „Numerische Fahrzeugaerodynamik am Beispiel von ‚DrivAer‘ Modellkonfigurationen“. Automobiltechnische Zeitschrift – ATZ, Springer Verlag, Band 118, Ausgabe 5/2016, pp. 78-85 DOI:10.1007/s35148-016-0012-6 (also as „Computational vehicle aerodynamics by reference to ‚DrivAer‘ model configurations“. ATZ Worldwide – https://www.atz-magazine.com , Vol. 118, Issue 5/2016, pp. 76-83, DOI:10.1007/s38311-016-0008-6)
  17. Jakirlic, S., Kutej, L., Hanssmann, D., Basara, B. , "Eddy-resolving Simulations of the Notchback ‘DrivAer’ Model: Influence of Underbody Geometry and Wheels Rotation on Aerodynamic Behaviour," SAE Technical Paper 2016-01-1602, 2016, DOI:10.4271/2016-01-1602.
  18. Krajnovic, S., Minelli, G. and Basara, B., 2016, “Partially-averaged Navier-Stokes simulations of two bluff body flows”, DOI:10.1016/j.amc.2015.03.136
  19. Mirzaei, M., Krajnovic, S. and Basara, B., 2015, „Partially-Averaged Navier-Stokes simulations of flows around two different Ahmed bodies“, Computers and Fluids, Vol. 117, pp. 273-286, DOI:10.1016/j.compfluid.2015.05.010
  20. Islam, M., Decker, F., de Villiers, E., Jackson, A., "Application of Detached-Eddy Simulation for Automotive Aerodynamics Development," SAE Technical Paper 2009-01-0333, 2009, DOI:10.4271/2009-01-0333.
  21. Popovac, M., and Hanjalic, K., 2005, “Compound Wall Treatment for RANS Computation of Complex Turbulent Flows,” Proc. of the Third MIT Conference On Computational Fluid and Solid Mechanics, Vol. 1, Elsevier, New York, Bathe K. (editor), pp. 802–806
  22. Popovac, M. and Hanjalic, K., 2007. “Compound Wall Treatment for RANS Computation of Complex Turbulent Flows and Heat Transfer”, Flow, Turbulence and Combustion, Vol. 78, pp. 177-202, DOI:10.1007/s10494-006-9067-x
  23. Spalart, P.R., Allmaras, S.R., 1994, “A one-equation turbulence model for aerodynamic flows”. La Recherche Aerospatiale 1, 5–21
  24. Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S., 1997, “Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach”, 1st AFOSR Int. Conf. on DNS and LES. In: Liu, C., Liu, Z. (Eds.), Advances in DNS/LES. Columbus, OH, Greyden Press, pp. 137–147
  25. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.Kh. and Travin, A., 2006, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”. Theor. Comput. Fluid Dyn., Vol. 20, pp. 181-195, DOI:http://dx.doi.org/10.1007/s00162-006-0015-0
  26. Speziale, C.G., 1998, “Turbulence modeling for time-dependent RANS and VLES: a review”, AIAA Journal, Vol. 36(2), pp. 173–184, DOI:10.2514/2.7499

Cited By