This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Next-Generation Low-Voltage Power Nets Impacts of Advanced Stop/Start and Sailing Functionalities

Journal Article
2017-01-0896
ISSN: 1946-3952, e-ISSN: 1946-3960
Published March 28, 2017 by SAE International in United States
Next-Generation Low-Voltage Power Nets Impacts of Advanced Stop/Start and Sailing Functionalities
Sector:
Citation: Griefnow, P., Andert, J., and Jolovic, D., "Next-Generation Low-Voltage Power Nets Impacts of Advanced Stop/Start and Sailing Functionalities," SAE Int. J. Fuels Lubr. 10(2):556-573, 2017, https://doi.org/10.4271/2017-01-0896.
Language: English

References

  1. Dhand, A., Cho, B., Walker, A., Muncey, A. et al., "Stop-Start Micro Hybrid: An Estimation of Automatic Engine Stop Duration in Real World Usage," SAE Technical Paper 2009-01-1336, 2009, doi:10.4271/2009-01-1336.
  2. Mueller, N., Strauss, S., Tumback, S., Goh, G. et al., "Next Generation Engine Start/Stop Systems: “Free-Wheeling”," SAE Int. J. Engines 4(1):874-887, 2011, doi:10.4271/2011-01-0712.
  3. Müller, N., Strauss, S., Tumback, S., Christ, A. (Bosch): “Coasting - Next Generation Start/Stop Systems” MTZ 09/2011
  4. Koch-Groeber, H. and Wang, J., "Criteria for Coasting on Highways for Passenger Cars," SAE Technical Paper 2014-01-1157, 2014, doi:10.4271/2014-01-1157.
  5. Koch-Groeber H., “Coasting on Highways - Potentials and Realization”, 13th Stuttgart Symposium 2013
  6. Ghosh, A., Bhatia, A., and Suresh, S., "Analysis of Potential of Sailing Functionality in Indian Driving Conditions," SAE Technical Paper 2016-28-0009, 2016, doi:10.4271/2016-28-0009.
  7. Breuer, S., Rohrbach-Kerl, A., “Fahrzeugdynamik - Mechanik des bewegten Fahrzeugs”, Springer 2015, doi:10.1007/978-3-658-09475-1
  8. Rajamani, R., “Vehicle Dynamics and Control“, Springer 2012, doi: 10.1007/978-1-4614-1433-9_4
  9. Waldman, C., Gurusubramanian, S., Fiorentini, L., “A model-based supervisory energy management strategy for a 12 V vehicle electrical system”, Control Engineering Practice, 44 (2015) 20-30, doi:10.1016/j.conengprac.2015.05.011
  10. Barsali, S., Ceraolo, M., Dynamical Models of Lead-Acid Batteries: Implementation Issues”, IEEE transactions on energy conversion, Vol. 17, No. 1, March2002
  11. Jackey, R., “A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection”, Mathworks 2007-01-0778
  12. Sterner, M., Stadler, I., „Energiespeicher - Bedarf, Technologien, Integration“, Springer 2014, doi:10.1007/978-3-642-37380-0
  13. Jackey, R., Saginaw, M., Sanghvi, P. et al., “Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell”, Mathworks 2013
  14. Ahmed, R., Gazzarri, J., Onori, S., Habibi, S. et al., "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications," SAE Int. J. Alt. Power. 4(2):233-247, 2015, doi:10.4271/2015-01-0252.
  15. Schaek, S., Stoermer, A.O., Kaiser, F. et al.: “Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters”, Journal of Power Sources Volume 196, Issue 3, 1 February 2011, Pages 1541-1554, doi:10.1016/j.jpowsour.2010.08.077
  16. Glaize, C., Genies, S., “Lithium Batteries and other Electrochemical Storage Systems”, John Wiley & Sons, 2013
  17. Standard VDA 320, “Electric and Electronic Components in Motor Vehicles 48 V On-Board Power Supply Requirements and Tests, VDA - Verband deutscher Automobilindustrie, published in January 2015
  18. Regulation No 100 of the Economic Commission for Europe of the United Nations (UNECE R100) - Uniform provisions concerning the approval of vehicles with regard to specific requirements for the electric power train [2015/505], published March 2015
  19. Ogrzewalla, J., Morra, E., Griefnow, P. et al., “Energy balance of 48 V mild hybrid vehicles with electric driven supercharger”, in Elektrik/Elektronik in Hybrid- und Elektrofahrzeugen und elektrisches Energiemanagement VII, ExpertVerlag, June 2016

Cited By