This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion

Journal Article
2017-01-0773
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 28, 2017 by SAE International in United States
The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion
Sector:
Citation: DelVescovo, D., Kokjohn, S., and Reitz, R., "The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion," SAE Int. J. Engines 10(4):1491-1505, 2017, https://doi.org/10.4271/2017-01-0773.
Language: English

Abstract:

Engine experiments were conducted on a heavy-duty single-cylinder engine to explore the effects of charge preparation, fuel stratification, and premixed fuel chemistry on the performance and emissions of Reactivity Controlled Compression Ignition (RCCI) combustion. The experiments were conducted at a fixed total fuel energy and engine speed, and charge preparation was varied by adjusting the global equivalence ratio between 0.28 and 0.35 at intake temperatures of 40°C and 60°C. With a premixed injection of isooctane (PRF100), and a single direct-injection of n-heptane (PRF0), fuel stratification was varied with start of injection (SOI) timing. Combustion phasing advanced as SOI was retarded between -140° and -35°, then retarded as injection timing was further retarded, indicating a potential shift in combustion regime. Peak gross efficiency was achieved between -60° and -45° SOI, and NOx emissions increased as SOI was retarded beyond -40°, peaking around -25° SOI. Optimal cases in terms of both gross efficiency and peak pressure rise rate (PPRR) were in the mid-range SOI timings centered about -50° SOI, while late SOI resulted in decreased gross efficiency, decreased combustion efficiency, and high NOx.
To assess the effect of the premixed fuel chemistry on RCCI combustion, a representative reformed fuel referred to as syngas (50% H2, 50% CO by volume), and methane were substituted for PRF100. A reference baseline PRF condition with an SOI timing of -50° at Tin = 40°C and ϕ = 0.30 was used for comparison purposes. Matching combustion phasing to the baseline case by adjusting the premixed percent or SOI timing resulted in reduced gross efficiency (ηg) and increased NOx emissions for both the syngas and methane cases. Matching the bulk heat release rate (HRR) characteristics by fixing the DI SOI quantity and duration and adding a premixed injection of n-heptane was able to regain most of the lost efficiency while decreasing NOx emissions close to the baseline level.