This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Numerical Analysis of the Steady-State Scavenging Flow Characteristics of a Two-Stroke Marine Engine
Technical Paper
2017-01-0558
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The scavenging process in two-stroke marine engines not only transports burnt gas out of the cylinder but also provides fresh air for the next cycle, thereby significantly affecting the engine performance. In order to enhance fuel-air mixing, the scavenging process usually generates swirling flow in uniflow-type scavenging engines. The scavenging stability directly determines the scavenging efficiency and even influences fuel-air mixing, combustion, and emission of the engine. In the present study, a computational fluid dynamics (CFD) analysis of the scavenging process in a steady-state scavenging flow test is conducted. A precession phenomenon is found in the high swirl model, and Proper Orthogonal Decomposition (POD) method is used to analyze the reason and the multi-scale characteristics of the precession phenomenon.
Recommended Content
Technical Paper | Duty Cycle for Recreational Marine Engines |
Ground Vehicle Standard | Low-Temperature Coolant Circuit Nomenclature and Applications |
Authors
Citation
Cui, L., Wang, T., Sun, K., Lu, Z. et al., "Numerical Analysis of the Steady-State Scavenging Flow Characteristics of a Two-Stroke Marine Engine," SAE Technical Paper 2017-01-0558, 2017, https://doi.org/10.4271/2017-01-0558.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 |
Also In
References
- Schweitzer , P. H. Scavenging Of Two-Stroke Cycle Diesel Engines Macmillan Co. 1949
- Hageman , M. D. , Sakai , S. S. , and Rothamer , D. A. Determination of soot onset and background particulate levels in a spark-ignition engine Proceedings of the Combustion Institute 35 3 2949 2956 2015 10.1016/j.proci.2014.06.105
- Percival , W. Method of Scavenging Analysis for 2-Stroke-Cycle Diesel Cylinders SAE Technical Paper 550291 1955 10.4271/550291
- Asanuma , T. and Yanagihara , S. Gas Sampling Valve for Measuring Scavenging Efficiency in High - Speed Two - Stroke Engines SAE Technical Paper 620540 1962 10.4271/620540
- Litke , B. The influence of inlet angles in inlet ports on the scavenging process in two-stroke uniflow-scavenged engine Mar Tech 3 45 247 252 1999 10.1017/s0022112098003772
- Ingvorsen , K. M. , Meyer , K. E. , Walther , J. H. , and Mayer , S. Turbulent swirling flow in a model of a uniflow-scavenged two-stroke engine Experiments in Fluids 54 3 1 17 2013 10.1007/s00348-013-1494-6
- Haider , S. , Meyer , K. E. , Cavar , D. , Schramm , J. , and Mayer , S. PIV Study of In-Cylinder Confined Swirling Flow for Scavenging 2-Stroke Marine Diesel Engines 8th International Symposium on Particle Image VelocimetryMelbourne Victoria, Australia 1 4 2009
- Sher , E. , Hossain , I. , Zhang , Q. , and Winterbone , D. E. Calculations and measurements in the cylinder of a two-stroke uniflow-scavenged engine under steady flow conditions Experimental Thermal and Fluid Science 4 4 418 431 1991 10.1016/0894-1777
- Ohigashi , S. , Kashiwada , Y. , and Achiwa , J. Scavenging the two-stroke diesel engine : effect of inlet port-angle on scavenging process of a through scavenging system Bulletin of JSME 3 9 130 136 1960 10.1299/jsme1958.3.130
- Sanborn , D. , Blair , G. , Kenny , R. , and Kingsbury , A. Experimental Assessment of Scavenging Efficiency of Two-Stroke Cycle Engines SAE Technical Paper 800975 1980 10.4271/800975
- Sweeney , M. , Kenny , R. , Swann , G. , and Blair , G. Single Cycle Gas Testing Method for Two-Stroke Engine Scavenging SAE Technical Paper 850178 1985 10.4271/850178
- Ingvorsen , K. M. , Meyer , K. E. , Walther , J. H. , and Mayer , S. Turbulent swirling flow in a dynamic model of a uniflow-scavenged two-stroke engine Experiments in Fluids 55 6 1 18 2014 10.1007/s00348-014-1748-y
- Haider , S. Experimental and numerical study of swirling flow in scavenging process for two-stroke marine diesel engines Ph. D. Ph. D. Technical University of Denmark 2010
- Hemmingsen , C. S. , Ingvorsen , K. M. , Walther , J. H. , and Mayer , S. Swirling flow in a two-stroke marine diesel engine 26th Nordic Seminar on Computational MechanicsOslo Norway 1 4 2013
- Obeidat , A. , Haider , S. , Ingvorsen , K. M. , Meyer , K. E. , and Walther , J. H. Influence of piston displacement on the scavenging and swirling flow in two-stroke diesel engines 23rd Nordic Seminar on Computational MechanicsStockholm Sweden 23 2010
- Andersen , F. H. , Hult , J. , Nogenmyr , K.-J. , and Mayer , S. CFD analysis of the scavenging process in marine two-stroke diesel engines Proc. ASME 2014 Internal Combustion Engine Division Fall Technical Conference, American Society of Mechanical Engineers 2014
- Lamas , M. I. , and Rodríguez Vidal , C. G. Computational fluid dynamics analysis of the scavenging process in the MAN B&W 7S50MC two-stroke marine diesel engine Journal of Ship Research 56 3 154 161 2012 10.5957/JOSR.56.3.120001
- CD-adapco Methodology 2013
- Jiang , X. , Siamas , G. A. , Jagus , K. , and Karayiannis , T. G. Physical modelling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays Progress in Energy and Combustion Science 36 2 131 167 2010 10.1016/j.pecs.2009.09.002
- Li , W. , Li , Y. , Wang , T. , Jia , M. , Che , Z. , and Liu , D. Investigation of the Effect of the In-Cylinder Tumble Motion on Cycle-to-Cycle Variations in a Direct Injection Spark Ignition (DISI) Engine Using Large Eddy Simulation (LES) Flow, Turbulence and Combustion 1 31 2016 10.1007/s10494-016-9773-y
- Di Mare , F. Large eddy simulation of reacting and non-reacting turbulent flows Ph.D University of London 2002
- Speziale , C. G. Analytical methods for the development of Reynolds-stress closures in turbulence Annual Review of Fluid Mechanics 23 1 107 157 1991
- Horiuti , K. A proper velocity scale for modeling subgrid-scale eddy viscosities in large eddy simulation Physics of Fluids A 5 1 146 157 1992 10.1063/1.858800
- Yoshizawa , A. A statistically-derived subgrid model for the large-eddy simulation of turbulence Physics of Fluids 25 9 1532 1538 1982 10.1063/1.863940
- Yoshizawa , A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling Physics of Fluids 1958 1988 29 7 2152 2164 1986 10.1063/1.865552
- Issa , R. I. Solution of the implicitly discretised fluid flow equations by operator-splitting Journal of Computational Physics 62 1 40 65 1986 10.1016/0021-9991(86)90099-9
- Lumley , J. L. The structure of inhomogeneous turbulent flows Atmospheric turbulence and radio wave propagation 166 178 1967
- Bizon , K. , Continillo , G. , Mancaruso , E. , Merola , S. S. , and Vaglieco , B. M. POD-based analysis of combustion images in optically accessible engines Combustion and Flame 157 4 632 640 2010 10.1016/j.combustflame.2009.12.013
- Liu , K. , Haworth , D. C. , Yang , X. , and Gopalakrishnan , V. Large-eddy simulation of motored flow in a two-valve piston engine: POD analysis and cycle-to-cycle variations Flow, Turbulence and Combustion 91 2 373 403 2013 10.1007/s10494-013-9475-7
- Fogleman , M. , Lumley , J. , Rempfer , D. , and Haworth , D. Application of the proper orthogonal decomposition to datasets of internal combustion engine flows Journal of Turbulence 5 23 1 3 2004 10.1088/1468-5248/5/1/023
- Sirovich , L. Turbulence and the dynamics of coherent structures. Part I: Coherent structures Quarterly of applied mathematics 45 3 561 571 1987
- Vu , T. T. , and Guibert , P. Proper orthogonal decomposition analysis for cycle-to-cycle variations of engine flow. Effect of a control device in an inlet pipe Experiments In Fluids 52 6 1519 1532 2012 10.1007/s00348-012-1268-6
- di Mare , F. , Knappstein , R. , and Baumann , M. Application of LES-quality criteria to internal combustion engine flows Computers and Fluids 89 200 213 2014 10.1016/j.compfluid.2013.11.003
- Nishimoto , K. and Kamimoto , T. A Study on the Influnce of Intel Angel and Reynolds Number on the Flow-Pattern of Uniflow Scavenging Air SAE Technical Paper 841056 1984 10.4271/841056
- Alekseenko , S. V. , Kuibin , P. A. , Okulov , V. L. , and Shtork , S. I. Helical vortices in swirl flow Journal of Fluid Mechanics 382 195 243 1999 10.1017/s0022112098003772
- Roudnitzky , S. , Druault , P. , and Guibert , P. Proper orthogonal decomposition of in-cylinder engine flow into mean scomponent, coherent structures and random Gaussian fluctuations Journal Of Turbulence 7 70 1 19 2006 10.1080/14685240600806264
- Druault , P. , Delville , J. , and Bonnet , J. P. Proper Orthogonal Decomposition of the mixing layer flow into coherent structures and turbulent Gaussian fluctuations C. R. Mec. 333 11 824 829 2005 10.1016/j.crme.2005.10.001
- Qin , W. J. , Xie , M. Z. , Jia , M. , Wang , T. Y. , and Liu , D. M. Large eddy simulation and proper orthogonal decomposition analysis of turbulent flows in a direct injection spark ignition engine: Cyclic variation and effect of valve lift Science China-Technological Sciences 57 3 489 504 2014 10.1007/s11431-014-5472-x
- WAKURI , Y. , ONO , S. , KIDO , H. , and TAKASAKI , K. 1981 An Experimental Study on the Exhaust Smoke of a Diesel Engine with Variable Angle Swirler Bulletin of JSME 24 193 1198 1205