This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Planning Flexible Maintenance for Heavy Trucks using Machine Learning Models, Constraint Programming, and Route Optimization

Journal Article
2017-01-0237
ISSN: 1946-3979, e-ISSN: 1946-3987
Published March 28, 2017 by SAE International in United States
Planning Flexible Maintenance for Heavy Trucks using Machine Learning Models, Constraint Programming, and Route Optimization
Citation: Biteus, J. and Lindgren, T., "Planning Flexible Maintenance for Heavy Trucks using Machine Learning Models, Constraint Programming, and Route Optimization," SAE Int. J. Mater. Manf. 10(3):306-315, 2017, https://doi.org/10.4271/2017-01-0237.
Language: English

References

  1. Lindgren , T. , Warnquist H. , and Eineborg M. 2013 Improving the maintenance planning of heavy trucks using constraint programming ModRef 2013: The Twelfth International Workshop on Constraint Modelling and Reformulation Uppsala, Sweden September 16th, 2013 74 90 Université Laval
  2. Lindgren , T. and Biteus J. 2014 Expert guided adaptive maintenance European Conference of the Prognostics and Health Management Society Nantes France 8th-10th July 2014 The Prognostics and Health Management Society (PHM Society)
  3. Jennions , I. Integrated Vehicle Health Management: The Technology Warrendale SAE International 2013 10.4271/r-429
  4. Russell , S. J. , Norvig P. , Canny J. F. , Malik J. M. , and Edwards D. D. 2003 Artificial intelligence: a modern approach 2 Prentice hall Upper Saddle River
  5. Frisk , E. , Krysander M. , and Larsson E. 2014 Data-driven lead-acide battery prognostics using random survival forests Proceedings of the Annual Conference of The Prognostics and Health Management Society Fort Worth, Texas, USA
  6. Frisk , E. and Krysander M. 2015 Treatment of accumulative variables in data-driven prognostics of lead-acid batteries Proceedings of IFAC Safeprocess’15 Paris, France
  7. Voronov , S. , Jung D. , and Frisk E. 2016 Heavy-duty truck battery failure prognostics using random survival forests IFAC Advances in Automotive Control
  8. Lindgren , T. 2016 2016 08 22 UC Irvine machine learning repository http://archive.ics.uci.edu/ml/
  9. Gurung , R. B. , Lindgren T. , and Boström H. 2015 Learning decision trees from histogram data Proceedings of the International Conference on Data Mining (DMIN) 139 The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)
  10. Gurung , R. B. , Lindgren T. , and Boström H. 2016 Learning decision trees from histogram data using multiple subsets of bins Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2016 Key Largo, Florida May 16-18, 2016 430 435
  11. Khalid , S. 2016 Data Mining using Big Data for Predicting Vehicle Maintenance Royal Institute of Technology (KTH) Stockholm, Sweden
  12. Costa , C. F. and Nascimento M. A. 2016 Ida 2016 industrial challenge: Using machine learning for predicting failures International Symposium on Intelligent Data Analysis 381 386 Springer
  13. Gondek , C. , Hafner D. , and Sampson O. R. 2016 Prediction of failures in the air pressure system of scania trucks using a random forest and feature engineering International Symposium on Intelligent Data Analysis 398 402 Springer
  14. 2016 The R project for statistical computing https://www.r-project.org/
  15. 2016 Caret: Classification and regression training https://cran.r-project.org/web/packages/caret/
  16. 2016 Drools: A business rules management system (brms) solution http://www.drools.org/
  17. 2016 Sicstus prolog https://sicstus.sics.se/
  18. Gustafsson , A. and Wassberg. S. Ekonomiska konsekvenser till följd av oplanerade stillestånd - En multipel fallstudie av företag i den svenska åkeribranschen Linköping University Sweden
  19. Jennions , I. K. Integrated Vehicle Health Management: Business Case Theory and Practice Society of Automotive Engineers
  20. 2016 Openstreetmap: A free editable map of the world https://www.openstreetmap.org/
  21. 2016 Graphhopper: An open source road routing library https://graphhopper.com/
  22. 2016 Optaplanner: A constraint satisfaction solver http://www.optaplanner.org/
  23. 2016 Mimosa osa-cbm: An open system architecture for condition-based maintenance http://www.mimosa.org/mimosa-osa-cbm
  24. 2016 Azure cloud environment https://azure.microsoft.com/

Cited By