This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Analysis of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

Journal Article
2017-01-0001
ISSN: 1946-4614, e-ISSN: 1946-4622
Published March 28, 2017 by SAE International in United States
The Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Analysis of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model
Sector:
Citation: Cheng, M. and Chen, B., "The Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Analysis of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model," SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 10(2):275-282, 2017, https://doi.org/10.4271/2017-01-0001.
Language: English

References

  1. Serrao L. , Onori S. , Sciarretta A. , Guezennec Y. , and Rizzoni G. Optimal energy management of hybrid electric vehicles including battery aging Am. Control Conf. (ACC) 2011 3 2125 2130 2011
  2. Moura S. J. , Stein J. L. , and Fathy H. K. Battery-health conscious power management in plug-in hybrid electric vehicles via electrochemical modeling and stochastic control IEEE Trans. Control Syst. Technol. 21 3 679 694 2013
  3. He Y. , Liu W. , and Koch B. J. Battery algorithm verification and development using hardware-in-the-loop testing J. Power Sources 195 9 2969 2974 2010
  4. Ramaswamy , D. , McGee , R. , Sivashankar , S. , Deshpande , A. et al. A Case Study in Hardware-In-the-Loop Testing: Development of an ECU for a Hybrid Electric Vehicle SAE Technical Paper 2004-01-0303 2004 10.4271/2004-01-0303
  5. Li Y. , Agashe P. , Ge Z. , and Chen B. Rapid Prototyping Energy Management System for a Single Shaft Parallel Hybrid Electric Vehicle Using Hardware-in-the-Loop Simulation 2013
  6. Prada E. , Di Domenico D. , Creff Y. , Bernard J. , Sauvant-moynot V. , and Huet F. A Simplified Electrochemical and Thermal Aging Model of LiFePO 4 -Graphite Li-ion Batteries : Power and Capacity Fade Simulations J. Electrochem. Soc. 160 4 A616 A628 2013
  7. A. N. Laboratory Autonomie - Home http://www.autonomie.net/ 01 Jun 2016
  8. Autonomie - Powertrain and Vehicle Model Architecture and Development Environment. Version: 1210 Argonne National Laboratory
  9. Newman J. and Tiedemann W. Porous-electrode theory with battery applications AIChE J. 21 1 25 41 1975
  10. Newman J. and Thomas-Alyea K. E. Electrochemical Systems 2004
  11. Prada E. , Di Domenico D. , Creff Y. , Bernard J. , Sauvant-Moynot V. , and Huet F. Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications J. Electrochem. Soc. 159 9 2012
  12. Di Domenico D. , Stefanopoulou A. , and Fiengo G. Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter J. Dyn. Syst. Meas. Control 132 6 61302 2010
  13. Safari M. , Morcrette M. , Teyssot a. , and Delacourt C. Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries J. Electrochem. Soc. 156 3 A145 2009
  14. Ramasamy R. P. , Lee J. W. , and Popov B. N. Simulation of capacity loss in carbon electrode for lithium-ion cells during storage J. Power Sources 166 1 266 272 2007
  15. Ramadass P. , Haran B. , Gomadam P. M. , White R. , and Popov B. N. Development of First Principles Capacity Fade Model for Li-Ion Cells J. Electrochem. Soc. 151 2 A196 2004
  16. Liu P. , Wang J. , Hicks-Garner J. , Sherman E. , Soukiazian S. , Verbrugge M. , Tataria H. , Musser J. , and Finamore P. Aging Mechanisms of LiFePO[sub 4] Batteries Deduced by Electrochemical and Structural Analyses J. Electrochem. Soc. 157 4 A499 2010
  17. Cheng M. , Feng L. , and Chen B. Simulation of Lithium Ion HEV Battery Aging Using Electrochemical Battery Model under Different Ambient Temperature Conditions SAE Tech. Pap. 2015-April April 2015

Cited By