Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

Published November 16, 2016 by SAE International in United States
Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations
Sector:
Citation: Theile, M., Hassel, E., Thévenin, D., Buchholz, B. et al., "Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations," SAE Int. J. Engines 9(4):2320-2336, 2016, https://doi.org/10.4271/2016-01-9048.
Language: English

References

  1. Theile, M., Hassel, E., Thévenin, D., Buchholz, B., “LES of the cold flow of a DISI-Engine and validation with high-speed PIV measurements”, Presentation at LES for Internal Combustion Engine Flows [LES4ICE], December 2014
  2. Heywood, J.B., “Internal Combustion Engine Fundamentals”, McGraw and Hill Series in Mechanical Engineering, McGraw-Hill, New-York, 1988
  3. Dec, J. E., “Advanced compression-ignition engines - understanding the incylinder processes”, Proceedings of the Combustion Institute 32:2727-2742, 2009
  4. Granet, V., et. al., “Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine”, Combustion and Flame 159(2012):1562-1575
  5. Johansson, B., "Cycle to Cycle Variations in S.I. Engines - The Effects of Fluid Flow and Gas Composition in the Vicinity of the Spark Plug on Early Combustion," SAE Technical Paper 962084, 1996, doi:10.4271/962084.
  6. Brussies, E., “Simulation der Zylinderinnenströmung eines Zweiventil-Dieselmotors mit einem skalenauflösenden Turbulenzmodell”, Ph.D Thesis, Mechanical Engineering Departement, Technical University Darmstadt, 2013
  7. Enaux, B. et al. “LES study of cycle-to-cycle variations in a spark ignition engine”, Proceedings of the Combustion Institute 33(2):3115-3122, 2011, doi:10.1016/j.proci.2010.07.038
  8. Goryntsev, D. “Large Eddy Simulation of the Flow and Mixing Field in an Internal Combustion Engine”, Ph.D. thesis, Mechanical Engineering Departement, Technical University Darmstadt, 2007
  9. Haworth, D. C., Jansen, K. “Large Eddy Simulation on unstructured deforming meshes: towards reciprocating IC engines”, Computer & Fluids 29(5):493-524, 2000, doi:10.1016/S0045-7930(99)00015-8
  10. Rutland, C. J.: “Large-eddy simulations for internal combustion engines - a review:, International Journal of Engine Research 12(5):421-451, 2011, DOI: 10.1177/1468087411407248
  11. Hasse, C., Sohm, V., Durst, B., „Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach”, Computers & Fluids 39:25-48, 2010
  12. Imberdis, O., Hartmann, M., Bensler, H., Kapitza, L. et al., "A Numerical and Experimental Investigation of a DISI-Engine Intake Port Generated Turbulent Flow," SAE Technical Paper 2007-01-4047, 2007, doi:10.4271/2007-01-4047.
  13. Bottone, F., Kronenburg, A., Gosman, D., Marquis, A., „Large Eddy Simulation of Diesel In-cylinder Flow“, Flow Turbulence and Combustion 88:233-253, 2012, DOI: 10.1007/s10494-011-9376-6
  14. Chang, C.-Y., “Development and Validation of Scale-resolving Computational Models Relevant to IC-engine Flow Configurations”, Ph.D. thesis, Mechanical Engineering Department, Technical University Darmstadt, 2015
  15. Basara, B., Poredos, A., and Gorensek, P., "Scale-Resolving Simulations of the Flow in Intake Port Geometries," SAE Technical Paper 2016-01-0589, 2016, doi:10.4271/2016-01-0589.
  16. Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z., “Near-Wall Formulation of the Partially Averaged Navier-Stokes Turbulence Model”, American Institute of Aeronautics and Astronautics 49(12):2627-2626, 2011
  17. Piscaglia, F., Montorfano, A., and Onorati, A., "A Scale Adaptive Filtering Technique for Turbulence Modeling of Unsteady Flows in IC Engines," SAE Int. J. Engines 8(2):426-436, 2015, doi:10.4271/2015-01-0395.
  18. Menter, F.R., Kuntz, M., Bender, R. „A Scale-Adaptive Simulation Model for Turbulent Flow Predictions“, American Institute of Aeronautics and Astronautics, 2003-767, DOI:10.2514/6.2003-767
  19. Menter, F.R., Egorov, Y. “The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Prediction. Part 1: Theory and Model Description”, Flow, Turbulence and Combustion 85(1):113-138, 2010, DOI: 10.1007/s10494-010-9264-5
  20. Egorov, Y., Menter, F.R., Lechner, R., Cokljat, D. “The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Prediction. Part 2: Application to Complex Flows”, Flow, Turbulence and Combustion 85:139-165, 2010, DOI: 10.1007/s10494-010-9265-4
  21. Buhl, S., Hartmann, F., Hasse, C.: Identification of Large-Scale Structure Fluctuations in IC Engines using POD-Based Conditional Averaging, Oil & Gas Science and Technology - Rev. IFP Energie Nouvelles, DOI: 10.2516/ogst/2015022
  22. Menter, F.R., „Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows“, American Institute of Aeronautics and Astronautics, 02/1993, DOI: 10.2514/6.1993-2906
  23. Sommerfeld, M., ”Computational Fluid Dynamics of Dispersed Multi-Phase Flows”, (ERCOFTAC, 2008), ISBN 978-91-633-3564-8
  24. Baumgarten, C., “Mixture Formation in Internal Combustion Engines, (Springer-Verlag Berlin Heidelberg New York, 2006), ISBN 978-3-540-30835-5
  25. Beale, J. C., Reitz, R. D., "Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model". Atomization and Sprays, 9:623-650, 1999, DOI: 10.1615/AtomizSpr.v9.i6.40
  26. Fath, G.M., “Spray Atomization and Combustion”, American Institute of Aeronautics and Astronautics, 1986-0136
  27. Bader, A., Keller, P., Hasse, C., „The influence of non-ideal vapor-liquid equilibrium on the evaporation of ethanol/iso-octane droplets“, International Journal of Heat and Mass Transfer 64:547-558, 2013, DOI: 10.1016/j.ijheatmasstransfer.2013.04.056
  28. Lide David R., ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, http://www.hbcpnetbase.com, CRC Press, Boca Raton, FL, accessed Jan. 2015
  29. Kumzerova, E., Esch, T., Menter, F.: “Spray Simulations: Application of Various Droplet Breakup Models“, presented at 6th International Conference on Multiphase Flow, Germany, July 9-13, 2007
  30. Foucher, F., Landry, L., Halter, F., Mounaim-Rousselle, C., “Turbulent flow fields analysis of a Spark-Ignition engine as function of the boosted pressure”, presented at 14th International Symposium of Laser Techniques to Fluid Mechanics, Portugal, July 7-10, 2008
  31. Graftieaux, L.: “Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows”, Measurement Science and Technology 12(9):1422-1429, 2001
  32. Janas, P., Wlkoas, I., Böhm, B., Kempf, A., „On the Evolution oft he Flow Field in a Spark Ignition Engine“, Flow, Turbulence and Cobustion 1-18, 2016, DOI: 10.007/s10494-016-9744-3
  33. Aleiferis, P.G., v. Romunde, Z.R.: “An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and n-butanol from a multi-hole injector under hot fuel conditions”, Fuel 105:143-168, 2013
  34. Cundy, M., Schucht, T., Thiele, O., Sick, V. „High-Speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines“, Applied Optics, 48(4):B94-B104, 2009
  35. Curran, H. J., Gaffuri, P., Pitz, W. J., Westbrook, C. K., “A Comprehensive Modeling Study of iso-Octane Oxidation”, Combustion and Flame 129(3):253-280, (2002), DOI: 10.1016/S0010-2180(01)00373-X

Cited By