This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

Published March 14, 2016 by SAE International in United States
Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case
Sector:
Citation: Catellani, C., Bianchi, G., Falfari, S., Cazzoli, G. et al., "Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case," SAE Int. J. Engines 9(1):657-673, 2016, https://doi.org/10.4271/2016-01-9041.
Language: English

References

  1. Thobois, L., Rymer, G., Soulères, T., and Poinsot, T., "Large-Eddy Simulation in IC Engine Geometries," SAE Technical Paper 2004-01-1854, 2004, doi:10.4271/2004-01-1854.
  2. Thobois L., Rymer G., Souleres T., Poinsot T., and Van Den Heuvel B. . Large-eddy simulation for the prediction of aerodynamics in ic engines. International Journal of Vehicle Design, 39(4):368-382, January 2005.
  3. Brusiani, F., Forte, C., and Bianchi, G., "Assessment of a Numerical Methodology for Large Eddy Simulation of ICE Wall Bounded Non-Reactive Flows," SAE Technical Paper 2007-01-4145, 2007, doi:10.4271/2007-01-4145.
  4. Brusiani, F. and Bianchi, G., "LES Simulation of ICE Non-Reactive Flows in Fixed Grids," SAE Technical Paper 2008-01-0959, 2008, doi:10.4271/2008-01-0959.
  5. Piscaglia F., Montorfano A., Onorati A., and Brusiani F.. Boundary conditions and sgs models for les of wall-bounded separated flows: An application to engine-like geometries. Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles, 69(1):11-27, January 2014.
  6. Keskinen, J., Vuorinen, V., and Larmi, M., "Large Eddy Simulation of Flow over a Valve in a Simplified Cylinder Geometry," SAE Technical Paper 2011-01-0843, 2011, doi:10.4271/2011-01-0843.
  7. Keskinen, J., Vuorinen, V., Kaario, O., and Larmi, M., "Large Eddy Simulation of the Intake Flow in a Realistic Single Cylinder Configuration," SAE Technical Paper 2012-01-0137, 2012, doi:10.4271/2012-01-0137.
  8. Huijnen V., Olbricht C., Sadiki A., Somers L. M., Baert R. S., Janicka J., and de Goey L. P.. Study of turbulent flow structures of a practical steady engine head flow using large-eddy simulations. Journal of Fluids Engineering, 128(6):1181-1191, April 2006. ISSN 0098-2202.
  9. Moureau, V., Barton, I., Angelberger, C., and Poinsot, T., "Towards Large Eddy Simulation in Internal-Combustion Engines: Simulation of a Compressed Tumble Flow," SAE Technical Paper 2004-01-1995, 2004, doi:10.4271/2004-01-1995.
  10. Liu, K. and Haworth, D., "Development and Assessment of POD for Analysis of Turbulent Flow in Piston Engines," SAE Technical Paper 2011-01-0830, 2011, doi:10.4271/2011-01-0830.
  11. Benoit Enaux, Victor Granet, Olivier Vermorel, Corine Lacour, Ludovic Thobois, Vincent Dugu, and Thierry Poinsot. Large eddy simulation of a motored single-cylinder piston engine: Numerical strategies and validation. SAE, 86(2):153-177-, 2011. ISSN 1386-6184.
  12. Haworth D.C. and Jansen K.. Large-eddy simulation on unstructured deforming meshes: towards reciprocating ic engines. Computers & Fluids, 29(5):493-524, June 2000. ISSN 0045-7930.
  13. Haworth, D. C. Large-eddy simulation of in-cylinder flows. Oil & Gas Science and Technology - Rev. IFP, 54(2):175-185, 1999. doi: 10.2516/ogst:1999012.
  14. Thobois, L., Lauvergne, R., and Poinsot, T., "Using LES to Investigate Reacting Flow Physics in Engine Design Process," SAE Technical Paper 2007-01-0166, 2007, doi:10.4271/2007-01-0166.
  15. Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., and Veynante D.. Towards large eddy simulation of combustion in spark ignition engines. Proceedings of the Combustion Institute, 31(2):3059 - 3066, 2007. ISSN 1540-7489. doi: http://dx.doi.org/10.1016/j.proci.2006.07.086.
  16. Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., and Veynante D.. Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle {LES}. Combustion and Flame, 156(8):1525 - 1541, 2009. ISSN 0010-2180. doi: http://dx.doi.org/10.1016/j.combustflame.2009.04.007.
  17. Stephen B Pope. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6(1):35, 2004.
  18. Celik IB, Cehreli ZN, and Yavuz I. Index of resolution quality for large eddy simulations. Journal of Fluids Engineering, 127(5):949-, 2005. ISSN 00982202.
  19. Francesca di Mare, Robert Knappstein, and Michael Baumann. Application of les-quality criteria to internal combustion engine flows. Computers & Fluids, 89(0):200 - 213, 2014. ISSN 0045-7930.
  20. Brusiani, F., Bianchi, G., Baritaud, T., and d’Espinosa, A., "Using LES for Predicting High Performance Car Airbox Flow," SAE Int. J. Passeng. Cars - Mech. Syst. 2(1):1050-1064, 2009, doi:10.4271/2009-01-1151.
  21. Charles Hirsch, editor. Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization. John Wiley & Sons, Inc., New York, NY, USA, 1988. ISBN 0-471-91762-1.
  22. Nicoud F. and Ducros F.. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62(3): 183-200, 1999. ISSN 1386-6184.
  23. Abraham, P., Liu, K., Haworth, D., Reuss, D., and Sick, V. Evaluating large-eddy simulation (les) and high-speed particle image velocimetry (piv) with phase-invariant proper orthogonal decomposition (pod). Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles, 69(1):41-59, 2014.
  24. Plengsaard, C. and Rutland, C., "Improved Engine Wall Models for Large Eddy Simulation (LES)," SAE Technical Paper 2013-01-1097, 2013, doi:10.4271/2013-01-1097.
  25. Misdariis, A., Robert, A., Vermorel, O., Richard, S., and Poinsot, T. Numerical methods and turbulence modeling for les of piston engines: Impact on flow motion and combustion. Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles, 69(1):83-105, 2014.
  26. BayaToda H., Truffin K., and Nicoud F.. Is the dynamic procedure appropriate for all sgs models? In Poceedings of ECCOMAS CFD 2010. ECCOMAS, 2010.
  27. Baya Toda H., Cabrit O., Balarac G., Bose S., Lee J., Choi H., and Nicoud F.. A subgrid-scale model based on singular values for les in complex geometries. In Poceedings of Summer Program 2010. Center for Turbulence Research, 2010.
  28. Weller H. G., Tabor G., Jasak H., and Fureby C.. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys., 12(6):620-631, 1998. ISSN 0894-1866.
  29. OpenFOAM Foundation. OpenFOAM-2.3.0 Programmer’s Guide. OpenFOAM Foundation, 2014.
  30. Dellenback P. A., Metzger D. E., and Neitzel G. P.. Measurements in turbulent swirling flow through an abrupt axisymmetric expansion. AIAA Journal, 26(6):669-681, June 1988. ISSN 0001-1452. doi: 10.2514/3.9952.
  31. Germano Massimo, Piomelli Ugo, Moin Parviz, and Cabot William H.. A dynamic subgrid scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics (1989-1993), 3(7):1760-1765, 1991.
  32. Lilly D. K.. A proposed modification of the germano subgrid-scale closure method. Physics of Fluids, 1992.
  33. Vreman A. W.. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids (1994-present), 16(10):3670-3681, 2004.
  34. Jukka-Pekka Keskinen, Ville Vuorinen, Ossi Kaario, Martti Larmi. Effects of mesh deformation on the quality of large eddy simulations. In Fluid Dynamics and Co-located Conferences, pages -. American Institute of Aeronautics and Astronautics, June 2013.
  35. SB Pope. Turbulent flows. Cambridge University Press, 2000.
  36. Durbin Paul and Pettersson Reif B.A.. Statistical theory and modeling for turbulent flows. Wiley, 2011.
  37. Ferziger J.H. and Peric M.. Computational Methods for Fluid Dynamics. Springer Berlin Heidelberg, 2001.
  38. Yee H. C., Vinokur M., and Djomehri M. J.. Entropy splitting and numerical dissipation. J. Comput. Phys., 162(1):33-81, July 2000. ISSN 0021-9991. doi: 10.1006/jcph.2000.6517.
  39. Parthib, R. Rao and Laura, A. Schaefer. Numerical stability of explicit off-lattice boltzmann schemes: A comparative study. Journal of Computational Physics, 285(0):251-264, March 2015. ISSN 0021-9991.
  40. Vuorinen V., Keskinen J.-P., Duwig C., and Boersma B.J.. On the implementation of low-dissipative runge-kutta projection methods for time dependent flows using openfoam. Computers & Fluids, 93(0):153-163, April 2014. ISSN 0045-7930.
  41. Moureau V., Lartigue G., Sommerer Y., Angelberger C., Colin O., and Poinsot T.. Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. Journal of Computational Physics, 202(2):710-736, January 2005. ISSN 0021-9991.
  42. John, B. Heywood. Internal Combustion Engine Fundamentals. Mcgraw-Hill, 1989.
  43. John, L. Lumley. Engines: An Introduction. Cambridge University Press, 1999.
  44. Kuo, Tang-Wei, Yang, Xiaofeng, Gopalakrishnan, Venkatesh, and Chen, Zhaohui. Large eddy simulation (les) for ic engine flows. Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles, 69(1):61-81, 2014.
  45. Petersen, B. and Ghandhi, J., "High Resolution Scalar Dissipation and Turbulence Length Scale Measurements in an Internal Combustion Engine," SAE Int. J. Engines 3(1):65-83, 2010, doi:10.4271/2010-01-0185.
  46. Heim, D. and Ghandhi, J., "A Detailed Study of In-Cylinder Flow and Turbulence using PIV," SAE Int. J. Engines 4(1):1642-1668, 2011, doi:10.4271/2011-01-1287.
  47. Schlter J. U., Pitsch H., and Moin P.. Large-eddy simulation inflow conditions for coupling with reynoldsaveraged flow solvers. AIAA Journal, 42(3):478-484, March 2004. ISSN 0001-1452. doi: 10.2514/1.3488.
  48. Ardalan Javadi and Hakan Nilsson. Les and des of strongly swirling turbulent flow through a suddenly expanding circular pipe. Computers & Fluids, 107: 301-313, 2015. ISSN 0045-7930.
  49. Piscaglia, F., Montorfano, A., and Onorati, A., "A Scale Adaptive Filtering Technique for Turbulence Modeling of Unsteady Flows in IC Engines," SAE Int. J. Engines 8(2):426-436, 2015, doi:10.4271/2015-01-0395.
  50. Walter Gyllenram and Hkan Nilsson. Design and validation of a scale-adaptive filtering technique for lrn turbulence modeling of unsteady flow. Journal of Fluid Engineering, Volume 130:10, 2008.

Cited By