This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Use of an Innovative Modular Gripper System for Flexible Aircraft Assembly Operations
Technical Paper
2016-01-2108
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized. This work shows the potentials and challenges for using modular, standardized and adaptable productions systems in aviation industry.
Authors
Citation
Fette, M., Schwake, K., Wulfsberg, J., Neuhaus, F. et al., "Use of an Innovative Modular Gripper System for Flexible Aircraft Assembly Operations," SAE Technical Paper 2016-01-2108, 2016, https://doi.org/10.4271/2016-01-2108.Also In
References
- Bundesministerium für Wirtschaft und Energie: 20 Jahre Luftfahrtforschungsprogramm der Bundesregierung, URL: http://www.bmwi.de/DE/Presse/pressemitteilungen,did=705626.html
- Pressemeldung Reuters (Handelsblatt) 14.06.2015, Order-Boom bringt Flugzeugfabriken an ihre Grenzen.
- Bullen, G., "Automated/Mechanized Drilling and Countersinking of Airframes," (Warrendale, SAE International, 2013), doi:10.4271/R-416.
- Hartbrich, I.: Airbus geht neue Wege in der Flugzeugproduktion. VDI-Nachrichten 21 (2014).
- HAR: Boeing prognostiziert Nachfrage nach 36800 neuen Flugzeugen. VDI-Nachrichten 29/30 (2014)
- Schwake, K.; Wulfsberg, J.P.1, „Robot-based System for Handling of Aircraft Shell Parts Externer Link: Robot-based System for Handling of Aircraft Shell Parts” (http://www.sciencedirect.com/science/article/pii/S221282711401138X) In: Procedia CIRP 23 (2014) S. 104 - 109, Conference on Assembly Technologies and Systems.
- Stepanek, P., “Flexibel automatisierte Montage von leicht verformbaren großvolumigen Bauteilen,” Ph.D. thesis, Institut für Werkzeugmaschinen, Roboter und Montageanlagen, TU Hamburg-Harburg, Hamburg, 2006.
- Martin, O.C., Muelaner, J.E., Tomlinson, D., Kanyani, A., et al., “The Metrology Enhanced Tooling for Aerospace (META) Framwork”, Proceeding of the 36th International MATADOR Conference 2010, 363-366, Manchester, 2010, doi: 10.1007/978-1-84996-432-6_82.
- Müller, R., Riedel, M., Vette, M., Corves B., et al., „Reconfigurable Self-optimising Handling System,” Precision Assembly Technologies and Systems, IFIP Advances in Information and Communication Technology volume 315: 255-262, 2010, doi 10.1007/978-3-642-11598-1_30.
- Wollnack, J. and Stepanek, P., “Form correction, positioning and orientation guidance for a flexible and automated assembly of large components,” wt Werkstattstechnik online 94(9):414-421, 2004.
- Quellmalz, W.,”Steigerung der Genauigkeit von Laser Trackern,” Dissertation, AWA-Fortschrittsberichte, ISBN 978-3-86727-334-3, 2007
- Zou, J., "Indoor Global Positioning Measurement System Application for the Aircraft Flexible Joint Assembly," SAE Technical Paper 2010-01-1857, 2010, doi:10.4271/2010-01-1857.
- Müller, R., Esser, M., Janßen, M., Vette, M., et al., „Reconfigurable handling system,” Prod. Eng. Res. Devel. (2011) 5:453-461, 2011, doi: 10.1007/s11740-011-0321-2.
- AIRBUS, “A350 XWB forward fuselage,” http://www.airbus.com/galleries/photo-gallery/filter/a350-xwb-family/cache/0/?tx_photogallery_pi1[count]=100&p=5#, April, 2014.
- Bilfinger MCE GmbH, „AIRBUS A350 xwb PREFAL Section 16/19,“ http://www.mce.bilfinger.com/, Apr. 2014.
- AIRBUS Group, “Airbus Group results 2013,” http://www.airbus-group.com/dms/airbusgroup/int/en/press/documents/apc14_press-releases/Airbus-Group-FY-2013-Results_DE/Airbus%20Group%20FY%202013%20Results_DE.pdf, 2013.
- Nyhuis, P., Reinhart, G. and Abele, E., „Wandlungsfähige Produktionssysteme,“ PZH Produktionstechnisches Zentrum, Garbsen, ISBN 978-3-939026-96-9, 2008.
- Boehm, B. and Abts, C., „COTS integration: plug and pray,“ Computer 32(1):135-138, 1999, doi: 10.1109/2.738311.
- Mtorres, “TORRESTOOL,” http://www.mtorres.es/sites/default/files/documentos/fichas-de-producto/Torrestool.pdf, Apr, 2014.
- Weck, M., “Werkzeugmaschinen 1,” Springer Berlin Heidelberg, ISBN 978-3-642-38744-9, 2005.
- Weidner, R., „Knowledge-based planning and evaluation of assembly systems in aviation industry,” Ph.D. thesis, Laboratorium Fertigungstechnik, Helmut-Schmidt-Universität, Hamburg, Shaker-Verlag, Band 32, Aachen, 2014.
- Oberer-Treitz, S., Puzik, A. and Verl, A., „Sicherheitsbewertung der Mensch-Roboter-Kooperation,“ wt Werkstattstechnik online 101(9): 629-632, 2011.
- Fette, M.; Dorner, R.; Brandt, M.: Innovatives, modulares Montage- und Robotergreifersystem aus Faserverbundkunststoffen für die Automobilproduktion. Innovation Report des CFK-Valley Stade e.V. 6 (2014) Nr. 1, S. 22-24.
- Fette, M.; Schwake, K.; Wulfsberg, J.P.; Neuhaus, F.; Brandt, M., „Modulares Roboter-Greifer-System - Einsatz von Faserverbundkunststoffen für die Flugzeugmontage von Morgen“, In: ZWF (Zeitschrift für wirtschaftlichen Fabrikbetrieb), Jahrg. 110 (2015) Nr. 7+8, Carl Hanser Verlag München, S. 455 - 459.