This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Structure-Borne Noise Source Characterization from a Bayesian Point of View

Journal Article
2016-01-1795
ISSN: 1946-3995, e-ISSN: 1946-4002
Published June 15, 2016 by SAE International in United States
Structure-Borne Noise Source Characterization from a Bayesian Point of View
Sector:
Citation: Faure, C., Pezerat, C., Ablitzer, F., and Antoni, J., "Structure-Borne Noise Source Characterization from a Bayesian Point of View," SAE Int. J. Passeng. Cars - Mech. Syst. 9(3):1020-1026, 2016, https://doi.org/10.4271/2016-01-1795.
Language: English

References

  1. Noiseux DU. Measurement of power flow in uniform beams and plates. The Journal of the Acoustical Society of America, 47(1B):238-247, 1970.
  2. Pavić G. Measurement of structure borne wave intensity, part i: Formulation of the methods. Journal of Sound and Vibration, 49(2):221-230, 1976.
  3. Bert Janssens Karl Hans, Germain Mas Peter Paul, Gajdatsy Peter Akos, Van Der Auweraer Herman, and Pierre Gielen Ludo Jean. Transfer path analysis, May 20 2014. US Patent 8,731,868.
  4. Lyon Richard H and Lyon RH. Statistical energy analysis of dynamical systems: theory and applications. MIT press Cambridge, 1975.
  5. Dobson BJ and Rider E. A review of the indirect calculation of excitation forces from measured structural response data. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 204(2):69-75, 1990.
  6. Zhang Yong and Mann J Adin III. Examples of using structural intensity and the force distribution to study vibrating plates. The Journal of the Acoustical Society of America, 99(1):354-361, 1996.
  7. Pezerat Charles. Méthode d’identification des efforts appliqués sur une structure vibrante, par résolution et régularisation du problème inverse. PhD thesis, INSA de Lyon, 1996.
  8. Djamaa MC, Ouelaa Nouredine, Pezerat Charles, and Guyader Jean-Louis. Reconstruction of a distributed force applied on a thin cylindrical shell by an inverse method and spatial filtering. Journal of sound and vibration, 301(3):560-575, 2007.
  9. Renzi Cédric. Identification Expérimentale de Sources vibratoires par Résolution du problème Inverse modélisé par un opérateur Eléments Finis local. PhD thesis, INSA de Lyon, 2013.
  10. Hansen Per Christian. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM Journal on Scientific and Statistical Computing, 11(3):503-518, 1990.
  11. Tikhonov Andreĭ. Solutions of ill-posed problems.
  12. Golub Gene H, Heath Michael, and Wahba Grace. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2):215-223, 1979.
  13. Hansen Per Christian. Analysis of discrete ill-posed problems by means of the l-curve. SIAM review, 34(4):561-580, 1992.
  14. Bolstad William M. Introduction to Bayesian statistics. John Wiley & Sons, 2004.
  15. Tarantola Albert. Inverse problem theory and methods for model parameter estimation. siam, 2005.
  16. Antoni Jérôme. A bayesian approach to sound source reconstruction: optimal basis, regularization, and focusing. The Journal of the Acoustical Society of America, 131(4):2873-2890, 2012.
  17. Pereira Antonio. Acoustic imaging in enclosed spaces. PhD thesis, INSA de Lyon, 2014.
  18. Aucejo M and Smet O De. Bayesian source identification using local priors. Mechanical Systems and Signal Processing, 2015.
  19. Brooks Steve, Gelman Andrew, Jones Galin, and Meng Xiao-Li. Handbook of Markov Chain Monte Carlo. CRC press, 2011.
  20. Casella George and George Edward I. Explaining the gibbs sampler. The American Statistician, 46(3):167-174, 1992.
  21. Guyader Jean-Louis. Vibration in continuous media. John Wiley & Sons, 2013.

Cited By