This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Structure-Borne Noise Source Characterization from a Bayesian Point of View
Journal Article
2016-01-1795
ISSN: 1946-3995, e-ISSN: 1946-4002
Sector:
Citation:
Faure, C., Pezerat, C., Ablitzer, F., and Antoni, J., "Structure-Borne Noise Source Characterization from a Bayesian Point of View," SAE Int. J. Passeng. Cars - Mech. Syst. 9(3):1020-1026, 2016, https://doi.org/10.4271/2016-01-1795.
Language:
English
Abstract:
In this paper, a local method of structure-borne noise source characterization is presented. It is based on measurements of transverse displacement and local structural operator knowledge and allows to localize and quantify sources without any need of boundary condition information. To fix the instability caused by measurement noise, the regularization step inherent to inverse problem is realized with a probabilistic approach, within the Bayesian framework. When a priori distributions about noise and sources are considered as Gaussian, the Bayesian regularization is equivalent to the well-known Tikhonov regularization. The optimization of the regularization is then performed by the Gibbs Sampling (GS) algorithm, which is part of Markov Chain Monte Carlo (MCMC) techniques. The whole probability of the regularized solution is inferred, providing access to confidence intervals. Both simulation and measurements of a beam excited by an harmonic point source are realized to validate this approach.
Recommended Content
Technical Paper | Modeling of Automotive Gear Rattle Phenomenon: State of the Art |
Technical Paper | Active Control of Brake Squeal Via “Smart Pads” |