This content is not included in your SAE MOBILUS subscription, or you are not logged in.
A Study on In-Cycle Combustion Control for Gasoline Controlled Autoignition
Technical Paper
2016-01-0754
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Gasoline Controlled Auto Ignition offers a high CO2 emission reduction potential, which is comparable to state-of-the-art, lean stratified operated gasoline engines. Contrary to the latter, GCAI low temperature combustion avoids NOX emissions, thereby trying to avoid extensive exhaust aftertreatment. The challenges remain in a restricted operation range due to combustion instabilities and a high sensitivity towards changing boundary conditions like ambient temperature, intake pressure or fuel properties. Once combustion shows instability, cyclic fluctuations are observed. These appear to have near-chaotic behavior but are characterized by a superposition of clearly deterministic and stochastic effects. Previous works show that the fluctuations can be predicted precisely when taking cycle-tocycle correlations into account. This work extends current approaches by focusing on additional dependencies within one single combustion cycle. A concept of an in-cycle combustion control algorithm is developed the shows the potential to improve the controllability and consequently increase combustion stability in stationary operation. It is implemented and tested on a single cylinder engine with an electromechanical valve train to control the demanded internal residual gas fraction. The control is based on real-time analysis of the cylinder pressure which is computed by a field programmable gate array module on a rapid prototyping engine control unit. Thereby, the subsequent combustion characteristics, characterized by the center of combustion (crank angle where 50 % heat release is achieved: α50 ) is predicted as a function of the thermodynamic state during recompression that includes influences of the previous cycles as well as the gas exchange of the current cycle. The intake valve timing is adapted following a linear prediction to minimize the fluctuations of α50. Applying the in-cycle control strategy at n = 1500 1/min and imep = 4 bar reveals an improvement of the standard deviations of imep and α50 by 40 % compared to open loop operation.
Recommended Content
Authors
- Bastian Lehrheuer - RWTH Aachen University VKA
- Stefan Pischinger - RWTH Aachen University VKA
- Maximilian Wick - RWTH Aachen University MSCE
- Jakob Andert - RWTH Aachen University MSCE
- Dirk Berneck - dSPACE GmbH
- Dennis Ritter - RWTH Aachen University IRT
- Thivaharan Albin - RWTH Aachen University IRT
- Matthias Thewes - FEV GmbH
Citation
Lehrheuer, B., Pischinger, S., Wick, M., Andert, J. et al., "A Study on In-Cycle Combustion Control for Gasoline Controlled Autoignition," SAE Technical Paper 2016-01-0754, 2016, https://doi.org/10.4271/2016-01-0754.Also In
References
- Edenhofer, O., “Climate change 2014: Mitigation of climate change : Working Group III contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, New York, NY, 2014.
- Europäisches Parlament, “Verordnung (EG) Nr. 443/2009 des Europäischen Parlaments und des Rates vom 23. April 2009 zur Festsetzung von Emissionsnormen für neue Personenkraftwagen im Rahmen des Gesamtkonzepts der Gemeinschaft zur Verringerung der CO 2 -Emissionen von Personenkraftwagen und leichten Nutzfahrzeugen,” 2009.
- Europäisches Parlament, “Regulation (EU) No 333/2014 of the European Parliament and of the Council of 11 March 2014 amending Regulation (EC) No 443/2009 to define the modalities for reaching the 2020 target to reduce CO 2 emissions from new passenger cars,” 2014.
- Environmental Protection Agency, “2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards,” 2012.
- Environmental Protection Agency, “Energy Independence and Security Act of 2007: EISA,” 2007.
- Waltner A., Lückert P., Schaupp U., Rau E., Kemmler R. und Weller R., “Die Zukunftstechnologie des Ottomotors: strahlgeführte Direkteinspritzung mit Piezo- Injektor,” in: 27. Internationales Wiener Motorensymposium 2006.
- Breitbach, H., Waltner, A., Landenfeld, T., and Schwarz, C., “Lean-burn Stratified Combustion at Gasoline Engines,” MTZ Worldwide 74(5):10-16, 2013, doi:10.1007/s38313-013-0047-y.
- Langen P., Melcher T., Missy S., Schwarz C. und Schünemann E., “Neue BMW Sechs- und Vierzylinder-Ottomotoren mit High Precision Injection und Schichtbrennverfahren,” in: 28. Internationales Wiener Motorensymposium 2007.
- Pischinger, R., Klell, M., and Sams, T., “Thermodynamik der Verbrennungskraftmaschine,” Der Fahrzeugantrieb, Springer, Wien, ISBN 9783211992760, 2009.
- Stapf, K.G., Seebach, D., Fricke, F., Pischinger, S. et al., “CAIEngines: Modern combustion system to face future challenges,” in: International Conference : The Spark Ignition Engine of the Future : Technologies to meet the CO2 challenge.
- Stan, C. and Guibert, P., “Verbrennungssteuerung durch Selbstzündung,” MTZ - Motortechnische Zeitschrift 65(1):56-62, 2004, doi:10.1007/BF03227159.
- Guibert, P., Morin, C., and Mokhtari, S., “Verbrennungssteuerung durch Selbstzündung,” MTZ -Motortechnische Zeitschrift 65(2):122-130, 2004, doi:10.1007/BF03227165.
- Seebach, D., “Untersuchung der kontrollierten Selbstzündung an einem direkteinspritzenden Ottomotor und Modellierung des transienten Verhaltens,” Techn. Hochsch., Diss.--Aachen, 2010.
- Kulzer, A., Fischer, W., Karrelmeyer, R., Sauer, C. et al., “Kontrollierte Selbstzündung beim Ottomotor CO2 Einsparpotenziale,” MTZ - Motortechnische Zeitschrift 70(1):50-57, 2009, doi:10.1007/BF03225457.
- Willand, J., Jelitto, C., and Jakobs, J., “Das GCIBrennverfahren von Volkswagen,” MTZ - Motortechnische Zeitschrift 69(4):352-358, 2008, doi:10.1007/BF03227299.
- Zhao, H., “HCCI and CAI engines for the automotive industry,” Woodhead Publishing in mechanical engineering, CRC Press; Woodhead Pub., Boca Raton FL, Cambridge, England, ISBN 9781845691288, 2007.
- Bücker Christian, “Betriebsstrategien zur kontrollierten Selbstzündung in Ottomotoren,” Dissertation, RWTH Aachen University, Aachen, 2008.
- Brassat, A., “Betriebsstrategien der kontrollierten Selbstzündung am aufgeladenen direkteinspritzenden Ottomotor,” Dissertation, RWTH Aachen University, Aachen, 2013.
- Stapf, K.G., “Numerische Simulation der kontrollierten Selbstzündung,” Techn. Hochsch., Diss.--Aachen, 2011.
- Rassweiler, G. and Withrow, L., "Motion Pictures of Engine Flames Correlated with Pressure Cards," SAE Technical Paper 380139, 1938, doi:10.4271/380139.
- Saxena, S. and Bedoya, I.D., “Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits,” Progress in Energy and Combustion Science 39(5):457-488, 2013, doi:10.1016/j.pecs.2013.05.002.
- Morcinkowski, B., Lehrheuer, B., Ewald, J., Adomeit, P. et al., “NUMERICAL INVESTIGATION OF CYCLE-TO-CYCLE FLUCTUATIONS AT GASOLINE CONTROLLED AUTOIGNITION ENGINES,”(F2014-CET-078).
- Zigler, B.T., Keros, P.E., Helleberg, K.B., Fatouraie, M. et al., “An experimental investigation of the sensitivity of the ignition and combustion properties of a single-cylinder research engine to spark-assisted HCCI,” INTERNATIONAL JOURNAL OF ENGINE RESEARCH 12(4):353-375, 2011, doi:10.1177/1468087411401286.
- Larimore Jacob, Hellström Erik, Sterniak Jeffrey, Jiang Li et al., “Experiments and Analysis of High Cyclic Variability at the Operational Limits of Spark-Assisted HCCI Combustion,” IEEE, Piscataway, NJ, 2012.
- Koopmans, L., Backlund, O., and Denbratt, I., "Cycle to Cycle Variations: Their Influence on Cycle Resolved Gas Temperature and Unburned Hydrocarbons from a Camless Gasoline Compression Ignition Engine," SAE Technical Paper 2002-01-0110, 2002, doi:10.4271/2002-01-0110.
- Hellstrom, E., Larimore, J., Jade, S., Stefanopoulou, A.G. et al., “Reducing Cyclic Variability While Regulating Combustion Phasing in a Four-Cylinder HCCI Engine,” IEEE Trans. Contr. Syst. Technol. 22(3):1190-1197, 2014, doi:10.1109/TCST.2013.2271355.
- Larimore, J., “Experimental Analysis and Control of Recompression Homogeneous Charge Compression Ignition Combustion at the High Cyclic Variability Limit,” Dissertation, The University of Michigan, Ann Arbor, 2014.
- Andert, J., “Modellbasierte Echtzeitoptimierung der ottomotorischen Selbstzündung,” Dissertation, RWTH Aachen University, Aachen, 2012.
- Morcinkowski Bastian, “Simulative Analyse von zyklischen Schwankungen der kontrollierten ottomotorischen Selbstzündung,” Dissertation, RWTH Aachen University, Aachen, 2015.
- Chiang, C.-J. and Stefanopoulou, A.G., “Stability Analysis in Homogeneous Charge Compression Ignition (HCCI) Engines With High Dilution,” IEEE Trans. Contr. Syst. Technol. 15(2):209-219, 2007, doi:10.1109/TCST.2006.883333.
- VaughanAdam, “Adaptive Machine Learning for Modeling and Control of Non-Stationary, Near Chaotic Combustion in Real-Time,” Dissertation, University of Michigan, Ann Arbor, MI 48109, USA, 2015.
- J., H., J., G., and Maria, K., “Closed-loop control of combustion phasing in an HCCI engine using VVA and variable EGR,” in: Gregory, S. (ed.), Advances in Automotive Control, IFAC proceedings volumes, Aug. 20, 2007, Elsevier:501-508, 2007.
- Liao, H.-H., Widd, A., Ravi, N., Jungkunz, A.F. et al., “Control of recompression HCCI with a three region switching controller,” CONTROL ENGINEERING PRACTICE 21(2):135-145, 2013, doi:10.1016/j.conengprac.2012.09.003.
- Ravi, N., Roelle, M.J., Liao, H.-H., Jungkunz, A.F. et al., “Model-Based Control of HCCI Engines Using Exhaust Recompression,” IEEE Trans. Contr. Syst. Technol., 2010, doi:10.1109/TCST.2009.2036599.
- Olsson, J.-O., Tunestål, P., and Johansson, B., “Closed-Loop Control of an HCCI Engine,”
- Bengtsson, J., Strandh, P., Johansson, R., Tunestål, P. et al., “Closed-loop combustion control of homogeneous charge compression ignition(HCCI) engine dynamics,” Int. J. Adapt. Control Signal Process. 18(2):167-179, 2004, doi:10.1002/acs.788.
- Shaver, G.M. and Gerdes, J.C., “Cycle-to-Cycle Control of HCCI Engines,”:403-412.
- Bidarvatan, M., Shahbakhti, M., Jazayeri, S.A., and Koch, C.R., “Cycle-to-cycle modeling and sliding mode control of blended-fuel HCCI engine,” CONTROL ENGINEERING PRACTICE 24:79-91, 2014, doi:10.1016/j.conengprac.2013.11.008.
- Agrell, F., Ångström, H., Eriksson, B., Wikander, J. et al., "Transient Control of HCCI Through Combined Intake and Exhaust Valve Actuation," SAE Technical Paper 2003-01-3172, 2003, doi:10.4271/2003-01-3172.
- Agrell, F., Ångström, H., Eriksson, B., Wikander, J. et al., "Integrated Simulation and Engine Test of Closed Loop HCCI Control by Aid of Variable Valve Timings," SAE Technical Paper 2003-01-0748, 2003, doi:10.4271/2003-01-0748.
- Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J. et al., “Top 10 algorithms in data mining,” Knowl Inf Syst 14(1):1-37, 2008, doi:10.1007/s10115-007-0114-2.
- Russell, S.J., Norvig, P., and Davis, E., “Artificial intelligence: A modern approach,” Prentice Hall series in artificial intelligence, 3rd ed., Prentice Hall, Upper Saddle River, NJ, ISBN 0132071487, 2010.
- Hering Tim, “Parallel Execution of k-NN-Queries on inmemory K-D Trees: Faculty of Computer Science, University Otto-von-Guericke”
- Toussaint, G.T., “Proximity graphs for nearest neighbor decision rules: recent progress,” Interface 34 2002.