This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Fuel Economy Gains through Dynamic-Skip-Fire in Spark Ignition Engines
Technical Paper
2016-01-0672
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Pumping losses are one of the primary energy losses in throttled spark ignition engines. In order to reduce fuel consumption, engine manufacturers are incorporating devices that deactivate the valve-train in some cylinders. In the operating strategies currently implemented in the market, fixed sets of cylinders are deactivated, allowing 2 or 3 operating modes. In contrast, Tula Technology has developed Dynamic Skip Fire (DSF), in which the decision of whether or not to fire a cylinder is decided on a cycle-by-cycle basis. Testing the DSF technology in an independent certified lab on a 2010 GMC Denali, reduces the fuel consumption by 18% on a cycle-average basis, and simultaneously increases the ability to mitigate noise and vibration at objectionable frequencies.
This paper outlines the results of the experiments that have been conducted on an eight cylinder engine over a wide range of conditions to investigate the fuel consumption gains and emissions impact when incorporating DSF technology. The experiments have been carried out over a wide range of engine speeds, loads, and DSF strategies and significant improvements have been observed.
Recommended Content
Technical Paper | Estimation of Performance Characteristics of a Split Cycle Based SI Engine |
Technical Paper | Effects of intake-Valve Closing Timing on Spark-Ignition Engine Combustion |
Citation
Eisazadeh-Far, K. and Younkins, M., "Fuel Economy Gains through Dynamic-Skip-Fire in Spark Ignition Engines," SAE Technical Paper 2016-01-0672, 2016, https://doi.org/10.4271/2016-01-0672.Also In
References
- Stabinsky , M. , Albertson , W. , Tuttle , J. , Kehr , D. et al. Active Fuel Management™ Technology: Hardware Development on a 2007 GM 3.9L V-6 OHV SI Engine SAE Technical Paper 2007-01-1292 2007 10.4271/2007-01-1292
- Hadler , J. , Neusser , H.-J. , Szengel , R. , Middendorf , H. The New TSI 33rd International Vienna Motor Symposium April 2012
- Fujiwara , M. , Kumagai , K. , Segawa , M. , Sato , R. et al. Development of a 6-Cylinder Gasoline Engine with New Variable Cylinder Management Technology SAE Technical Paper 2008-01-0610 2008 10.4271/2008-01-0610
- Förster , H.J. , Lübbing , B.E. , Letsche U. Process and Apparatus for Intermittent Control of a Cyclically Operating Internal Combustion Engine U.S. Patent 4509488 1982
- Serrano , J. , Routledge , G. , Lo , N. , Shost , M. et al. Methods of Evaluating and Mitigating NVH when Operating an Engine in Dynamic Skip Fire SAE Int. J. Engines 7 3 1489 1501 2014 10.4271/2014-01-1675
- Wilcutts , M. , Switkes , J. , Shost , M. , and Tripathi , A. Design and Benefits of Dynamic Skip Fire Strategies for Cylinder Deactivated Engines SAE Int. J. Engines 6 1 278 288 2013 10.4271/2013-01-0359
- Wyszynski , L. , Stone , C. , and Kalghatgi , G. The Volumetric Efficiency of Direct and Port Injection Gasoline Engines with Different Fuels SAE Technical Paper 2002-01-0839 2002 10.4271/2002-01-0839
- Ohata , A. and Ishida , Y. Dynamic Inlet Pressure and Volumetric Efficiency of Four Cycle Four Cylinder Engine SAE Technical Paper 820407 1982 10.4271/820407
- Chien , L. , Younkins , M. , and Wilcutts , M. Modeling and Simulation of Airflow Dynamics in a Dynamic Skip Fire Engine SAE Technical Paper 2015-01-1717 2015 10.4271/2015-01-1717
- Heywood , J.B. Internal Combustion Engine Fundamentals McGraw-Hill 1988
- Chen , S. , Chien , L. , Nagashima , M. , Van Ess , J. et al. Misfire Detection in a Dynamic Skip Fire Engine SAE Int. J. Engines 8 2 389 398 2015 10.4271/2015-01-0210
- Ferrari , G. , Onorati , A. , D’Errico , G. , Cerri , T. et al. An Integrated Simulation Model for the Prediction of S.I. Engine Cylinder Emissions and Exhaust After-Treatment System Performance SAE Technical Paper 2001-24-0045 2001 10.4271/2001-24-0045
- Wu , Y.Y. , Chen , B.C. , Tran , A.T. Pollutant Emission Reduction and Engine Performance Improvement by Using a Semi-Direct Injection Spark Ignition Engine Fuelled by LPG Aerosol and Air Quality Research 12 1289 1297 2012
- D'Errico , G. , Ferrari , G. , Onorati , A. , and Cerri , T. Modeling the Pollutant Emissions from a S.I. Engine SAE Technical Paper 2002-01-0006 2002 10.4271/2002-01-0006
- Dordaei , H. , Hazhir , A. , and Far , K. Pollutant Emissions Study of Gas Fueled SI Engines SAE Technical Paper 2005-01-3790 2005 10.4271/2005-01-3790
- Kašpar , J. , Fornasiero , P. , Hickey , N. Automotive catalytic converters: current status and some perspectives Catalysis Today 77 2003 419 449