This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine

Journal Article
2016-01-0545
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 05, 2016 by SAE International in United States
Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine
Sector:
Citation: De Bellis, V., Bozza, F., Fontanesi, S., Severi, E. et al., "Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine," SAE Int. J. Engines 9(1):506-519, 2016, https://doi.org/10.4271/2016-01-0545.
Language: English

References

  1. Annual European Union greenhouse gas inventory 1990-2012 and inventory report 2014. European Environment Agency; 2014. Report No.: 9/2014.
  2. Shayler, P. and Alger, L., "Experimental Investigations of Intake and Exhaust Valve Timing Effects on Charge Dilution by Residuals, Fuel Consumption and Emissions at Part Load," SAE Technical Paper 2007-01-0478, 2007, doi:10.4271/2007-01-0478.
  3. Akima, K., Seko, K., Taga, W., Torii, K. et al., "Development of New Low Fuel Consumption 1.8L i-VTEC Gasoline Engine with Delayed Intake Valve Closing," SAE Technical Paper 2006-01-0192, 2006, doi:10.4271/2006-01-0192.
  4. Fraser, N., Blaxill, H., Lumsden, G., and Bassett, M., "Challenges for Increased Efficiency through Gasoline Engine Downsizing," SAE Int. J. Engines 2(1):991-1008, 2009, doi:10.4271/2009-01-1053.
  5. Lecointe, B. and Monnier, G., "Downsizing a Gasoline Engine Using Turbocharging with Direct Injection," SAE Technical Paper 2003-01-0542, 2003, doi:10.4271/2003-01-0542.
  6. Fontanesi, S., Paltrinieri, S., D'Adamo, A., Cantore, G. et al., "Knock Tendency Prediction in a High Performance Engine Using LES and Tabulated Chemistry," SAE Int. J. Fuels Lubr. 6(1):98-118, 2013, doi:10.4271/2013-01-1082.
  7. Tabaczynski, R., Ferguson, C., and Radhakrishnan, K., "A Turbulent Entrainment Model for Spark-Ignition Engine Combustion," SAE Technical Paper 770647, 1977, doi:10.4271/770647.
  8. Heywood, J., Higgins, J., Watts, P., and Tabaczynski, R., "Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions," SAE Technical Paper 790291, 1979, doi:10.4271/790291.
  9. Hires, S., Tabaczynski, R., and Novak, J., "The Prediction of Ignition Delay and Combustion Intervals for a Homogeneous Charge, Spark Ignition Engine," SAE Technical Paper 780232, 1978, doi:10.4271/780232.
  10. Blizard, N. and Keck, J., "Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines," SAE Technical Paper 740191, 1974, doi:10.4271/740191.
  11. Morel, T., Rackmil, C., Keribar, R., and Jennings, M., "Model for Heat Transfer and Combustion In Spark Ignited Engines and its Comparison with Experiments," SAE Technical Paper 880198, 1988, doi:10.4271/880198.
  12. Richard, S., Bougrine, S., Font, G., Lafossas, F.A., Le Berr, F. “On the Reduction of a 3D CFD Combustion Model to Build a Physical 0D Model for Simulating Heat Release, Knock and Pollutants in SI Engines”, Oil & Gas Science and Technology - Rev. IFP. 64(3): 223-242, 2009. doi: 10.2516/ogst/2008055.
  13. Gatowsky, J., Heywood, J. “Flame Photographs in a Spark-Ignition Engine”, Combustion and Flame. 56(1):71-81, 1984.
  14. Gouldin, F. “An application of Fractals to Modeling Premixed Turbulent Flames”, Combustion and Flame. 68(3):249-266, 1987.
  15. Lee, T.K., Filipi, Z.S. “Improving the Predictiveness of a Quasi-D Combustion Model for Spark Ignition Engines with Flexible Intake Systems”, International Journal of Automotive Technology. 12(1): 1-9, 2011.
  16. Rivas, M., Higelin, P., Caillol, C., Sename, O. et al., "Validation and Application of a New 0D Flame/Wall Interaction Sub Model for SI Engines," SAE Int. J. Engines 5(3):718-733, 2012, doi:10.4271/2011-01-1893.
  17. Sjeric, M., Kozarac, D., and Bogensperger, M., "Implementation of a Single Zone k-ϵ Turbulence Model in a Multi Zone Combustion Model," SAE Technical Paper 2012-01-0130, 2012, doi:10.4271/2012-01-0130.
  18. Bossung, C., Grill, M., Bargende, M., Dingel, O., “A quasi-dimensional charge motion and turbulence model for engine process calculations”, proc. of 15. Internationales Stuttgarter Symposium, pp 1001-1019, May 2015
  19. Morel, T. and Keribar, R., "A Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-in-Piston Combustion Chambers," SAE Technical Paper 850204, 1985, doi:10.4271/850204.
  20. Achuth, M., Mehta, P.S. “Predictions of tumble and turbulence in four-valve pentroof spark ignition engines”, International Journal of Engine Research. 2(3): 209-227, 2001, doi: 10.1243/1468087011545442.
  21. Bianchi, G. and Fontanesi, S., "On the Applications of Low-Reynolds Cubic k-ϵTurbulence Models in 3D Simulations of ICE Intake Flows," SAE Technical Paper 2003-01-0003, 2003, doi:10.4271/2003-01-0003.
  22. De Bellis, V. , Severi, E., Fontanesi, S., Bozza, F., “Hierarchical 1D/3D Approach for the Development of a Turbulent Combustion Model applied to a VVA Turbocharged Engine. Part I: Turbulence Model”, Energy Procedia 45:829-838, 2014.
  23. De Bellis, V., Severi, E., Fontanesi, S., Bozza, F., “Hierarchical 1D/3D Approach for the Development of a Turbulent Combustion Model Applied to a VVA Turbocharged Engine. Part II: Combustion Model”, Energy Procedia. 45: 1027-1036, 2014.
  24. Bozza, F., De Bellis, V., Gimelli, A., and Muccillo, M., "Strategies for Improving Fuel Consumption at Part-Load in a Downsized Turbocharged SI Engine: a Comparative Study," SAE Int. J. Engines 7(1):60-71, 2014, doi:10.4271/2014-01-1064.
  25. Bozza F., De Bellis V., De Masi V., Gimelli A., Muccillo M., “Pre-lift Valve Actuation Strategy for the Performance Improvement of a DISI VVA Turbocharged Engine”, Energy Procedia, 45: 819-828, 2014.

Cited By