This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Study of the Plasticity Responses of TRIP780 Steel Subjected to Strain-Path Changes

Journal Article
2016-01-0363
ISSN: 1946-3979, e-ISSN: 1946-3987
Published April 05, 2016 by SAE International in United States
Experimental Study of the Plasticity Responses of TRIP780 Steel Subjected to Strain-Path Changes
Sector:
Citation: Yu, H., He, Z., and Shen, J., "Experimental Study of the Plasticity Responses of TRIP780 Steel Subjected to Strain-Path Changes," SAE Int. J. Mater. Manf. 9(3):558-564, 2016, https://doi.org/10.4271/2016-01-0363.
Language: English

References

  1. Bouvier S , Alves J L , Oliveira M C et al. Modeling of anisotropic work-hardening behavior of metallic materials subjected to strain-path changes Comp. Mater. Sci. 2005 32 301 315
  2. Vincze Gabriela , Barlat Frederic , Rauch Edgar F. et al. Experiments and modeling of low carbon steel sheet subjected to double strain path changes Metall. Mater. Trans. A 2013 44 10 4475 4479
  3. Yen-Ju Chen , Rong-Shean Lee , Jenn-Terng Gau Formability evaluation by novel specimen designs in sheet metal forming with two-step strain paths J. Eng. Manufacture 2013 227 1 144 152
  4. Gonzalez D. , Kelleher J.F. , da Fonseca J.Q et al. Macro and intergranular stress responses of austenitic stainless steel to 90° strain path changes Mater. Sci. Eng. A 2012 546 263 271
  5. Schmitt J H , Fernandes J V , Grácio J J et al. Plastic behavior of copper sheets during sequential tension tests Mater. Sci. Eng. A 1991 147 143 154
  6. Fernandes J V , Vieira M F Strain distribution in copper tensile specimens prestrained in rolling Metall. Mater. Trans. A 1997 28 1169 1179
  7. Vieira M F , Fernandes J V Plastic behavior of copper sheets subjected to a double strain-path change J. Mater. Process. Technol 1995 47 261 272
  8. Vieira M F , Fernandes J V , Chaparro B Yield stress after double strain-path change Mater. Sci. Eng. A 2000 284 64 69
  9. Wejdemann C. , Poulsen H.F. , Lienert U. et al. In situ observation of the dislocation structure evolution during a strain path change in copper JOM 2013 65 1 35 43
  10. Barlat F , Duarte J M F , Gracio J J et al. Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample Int. J. Plasticity 2003 19 1215 1244
  11. Khan A S , Pandey A , Stoughton T Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part II: A very high work hardening aluminum alloy (annealed 1100 Al) Int. J. Plasticity 2010 26 1421 1431
  12. Khan A S , Pandey A , Stoughton T Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part III: Yield surface in tension-tension stress space (Al 6061-T 6511 and annealed 1100 Al) Int. J. Plasticity 2010 26 1432 1441
  13. Yoshida F , Uemori T. A model of large-strain cyclic plasticity describing the Bauschinger effect and work hardening stagnation Int. J. Plasticity 2002 18 661 686
  14. An Y.G. Effect of strain path changes on strain hardening of 6082 aluminium alloy Mater. Sci. Techn. 2013 17 3 249 257
  15. Tarigopula V , Hopperstad O S , Langseth M et al. Elastic-plastic behavior of dual-phase, high-strength steel under strain-path changes Eur. J. Mech. A: Solids 2008 27 764 782
  16. Tarigopula V , Hopperstad O , Langseth M et al. An evaluation of a combined isotropic-kinematic hardening model for representation of complex strain-path changes in dual-phase steel Eur. J. Mech. A: Solids 2009 28 792 805
  17. Barlat F , Gracio J J , Myoung-Gyu Lee et al. An alternative to kinematic hardening in classical plasticity Int. J. Plasticity 2011 27 9 1309 1327
  18. Achani D. Constitutive models of elastoplasticity and fracture for aluminum alloys under strain path change Doctoral Thesis Dept. of Structural Engineering, Norwegian University of Science and Technology (NTNU) 2006 Trondheim
  19. Kim K H , Yin J J Evolution of anisotropy under plane stress J. Mech. Phys. Solids 1997 45 5 841 851
  20. Butuc M C , Teodosiu C , Barlat F et al. Analysis of sheet metal formability through isotropic and kinematic hardening models Eur. J. Mech. A: Solids 2011 30 4 532 546
  21. Nagai Kensuke , Shinohara Yasuhiro , Tsuru Eiji et al. Effect of strain path change and strain aging on anisotropic work-hardening behavior in ferritic steel J. Iron Steel Inst. Jpn 2012 98 6 267 274
  22. Cetlin P R , Corrêa E C S , Aguilar M T P The effect of the strain path on the work hardening of austenitic and ferritic stainless steels in axisymmetric drawing Metall. Mater. Trans. A 2003 34 3 589 601
  23. Sakharov N A , Fernandes J V , Vieira M F Strain path and work-hardening behavior of brass Mater. Sci. Eng. A 2009 507 1-2 13 21
  24. Boers S H A , Schreurs P J G , Geers M G D et al. Experimental characterization and model identification of directional hardening effects in metals for complex strain-path changes Int. J. Solids Struct. 2010 47 1361 1374
  25. Rikard Larsson , Oscar Bjöklund , Larsgunnar Nilsson et al. A study of high strength steels undergoing non-linear strain paths-Experiments and modeling J. Mater. Proc. Tech 2011 211 122 132
  26. Zang S L , Thuillier S , Le Port A et al. Prediction of anisotropy and hardening for metallic sheets in tension, simple shear and biaxial tension Int. J Mech. Sci. 2011 53 5 338 347
  27. Jinjin Ha , Myoung-Gyu Lee , Frédéric Barlat Strain hardening response and modeling of EDDQ and DP780 steel sheet under non-linear strain path Mechanics of Materials 2013 64 11 26
  28. Paul , Surajit Kumar Theoretical analysis of strain- and stress-based forming limit diagrams J Strain Anal. Eng. 2013 48 3 177 188
  29. Gutiérrez , David , Lara , A. , Casellas , Daniel et al. Effect of Strain Paths on Formability Evaluation of TRIP Steels Adv. Mater. Res. 2010 89 1 214 219
  30. Choi K , Soulami A , Liu W et al. Loading Path Dependence of Forming Limit Diagram of a TRIP800 Steel Int. J. Mater. Manuf. 2011 4 1 75 83
  31. Hance , B.M. Strain path effects on the flow behavior of advanced high strength steels (AHSS) International Symposium on Transformation and Deformation Mechanisms in Advanced High-strength Steels, 42nd Annual Conference of Metallurgists of CIM Vancouver, CA Aug 24-27, 2003
  32. Lee Jin-Woo , Lee Myoung-Gyu , Barlat , Frédéric Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction Int. J. Plasticity 2012 29 13 41
  33. Toros S. , Polat A. , Ozturk F. Formability and springback characterization of TRIP800 advanced high strength steel Mater. Des. 2012 41 10 298 305
  34. de Souza , T. , Rolfe , B.F. Understanding robustness of springback in high strength steels Int. J. Mech.Sci. 2013 68 3 236 245
  35. Geijselaers H. J. M. , Hilkhuijsen P. , Bor T. C. Modeling of the austenite-martensite transformation in stainless and TRIP steels AIP Conference Proceedings 2013 1532 1 175 182
  36. Kulawinski D , Nagel K , Henkel S et al. Characterization of stress-strain behavior of a cast TRIP steel under different biaxial planar load ratios Eng. Fract. Mech. 2011 78 8 12 23
  37. Spencer K , Věron M , Yu-Zhang K et al. The strain induced martensite transformation in austenitic stainless steels Part 1- Influence of temperature and strain History Mater. Sci. Tech. 2009 25 1 7 17
  38. Carbonnière J , Thuillier S , Sabourin F et al. Comparison of the work hardening of metallic sheets in bending-unbending and simple shear Int. J Mech. Sci. 2009 51 2 122 130
  39. Mendiguren J. , Cortés F. , Galdos L. et al. Strain path’s influence on the elastic behavior of the TRIP700 steel Mater. Sci. Eng. A 2013 560 433 438
  40. Kitayama K. , Tomé C.N. , Rauch E.F. et al. A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels Int. J. Plasticity 2013 46 54 69

Cited By