This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

Journal Article
2015-24-2451
ISSN: 1946-3936, e-ISSN: 1946-3944
Published September 06, 2015 by SAE International in United States
Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion
Sector:
Citation: Ekoto, I., Peterson, B., Szybist, J., and Northrop, W., "Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion," SAE Int. J. Engines 8(5):2227-2239, 2015, https://doi.org/10.4271/2015-24-2451.
Language: English

Abstract:

A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate. Gas sampling at the end of the NVO period was performed via a custom dump-valve apparatus, with detailed sample speciation by in-house gas chromatography. The balance of NVO-period input and output energy flows was calculated in terms of fuel energy, work, heat loss, and change in sensible energy. Experiment results were complemented by detailed chemistry single-zone reactor simulations performed at relevant mixing and thermodynamic conditions, with results used to evaluate ignition behavior and expected energy recovery yields.
For the intermediate bulk-gas temperatures present during the NVO period (900-1100 K), weak negative temperature coefficient behavior with iso-octane fueling significantly lengthened ignition delays relative to similar ethanol fueled conditions. Faster ethanol ignition chemistry led to lower recovered fuel intermediate yields relative to similar iso-octane fueled conditions due to more complete fuel oxidation. From the energy analysis it was found that increased NVO-period global equivalence ratio, either from lower NVO-period oxygen concentrations or higher fueling rates, in general led to a greater fraction of net recovered fuel energy and work as heat losses were minimized. These observations were supported by complementary single-zone reactor model results, which further indicated that kinetic time-scales favor chemical energy-consuming exothermic oxidation over slower endothermic reformation. Nonetheless, fuel energy recovery close to the thermodynamic equilibrium solution was achieved for baseline conditions that featured 4% NVO-period oxygen concentration.