This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Methods for Measuring, Analyzing and Predicting the Dynamic Torque of an Electric Drive Used in an Automotive Drivetrain

Published June 15, 2015 by SAE International in United States
Methods for Measuring, Analyzing and Predicting the Dynamic Torque of an Electric Drive Used in an Automotive Drivetrain
Sector:
Citation:
Language: English

References

  1. Albers, A., Fischer, J., Behrendt, M., and Lieske, D., “Method for measuring and interpreting the transfer path of acoustic phenomena in the drivetrain of a battery electric vehicle,” VDI-Berichte 2187, Friedrichshafen, 2013.
  2. Fischer, J., Behrendt, M., Lieske, D., and Albers, A., “Measurement and analysis of the interior noise and the transfer path of acoustic phenomena into the driver cabin of a battery electric vehicle,” INTER-NOISE and NOISE-CON Congress and Conference Proceedings 249(7):823-832, 2014.
  3. Albers, A., Fischer, J., Landes, D., and Behrendt, M., “Method for Measuring and Analyzing the Transfer Path of Acoustic Phenomena into the Driver Cabin of a Battery Electric Vehicle,” SAE Int. J. Engines 7(3):1585-1592, 2014, doi:10.4271/2014-01-2071.
  4. Albers, A., Fischer, J., and Lieske, D., “Measurement and Interpretation of the Transfer Path of an Acoustic Phenomenon in the Drivetrain of an Electric Vehicle,” ATZ Worldwide 116(3):48-55, 2014.
  5. Albers, A., Fischer, J., Bahrendt, M., and Schwarz, A., “Method for measuring and interpreting the surface velocities induced by torsional vibration in the drivetrain of a battery electric vehicle,” INTER-NOISE and NOISE-CON Congress and Conference Proceedings 247(8):374-383, 2013.
  6. Albers, A., Behrendt, M., Fischer, J., and Lieske, D., “Identification and definition of acoustic relevant limit values for electric vehicles,” 14. Internationales Stuttgarter Symposium, Springer: 1339-1354, 2014.
  7. Albers, A., Düser, T., and Ott, S., “X-in-the-loop als integrierte Entwicklungsumgebung von komplexen Antriebsystemen,” 8. Tagung Hardware-in-the-loop-Simulation, Haus der Technik, 2008.
  8. Albers, A., Behrendt, M., and Ott, S., “Validation - Central Activity to Ensure Individual Mobility,” FISITA 2010, 2010.
  9. Albers, A. and Maier, T., “3D-LDV für die experimentelle Modalanalyse und den Abgleich mit komplexen FE-Modellen,” 11. Polytec Anwenderkonferenz, 2010.
  10. Mayes, R.L. and Gomez, A.J., “Part 4: What'S Shakin', Dude? Effective use of Modal Shakers,” Experimental Techniques 30(4):51-61, 2006, doi:10.1111/j.1747-1567.2006.00063.x.
  11. Adhikari, S., “Damping modelling using generalized proportional damping,” Journal of Sound and Vibration 293(1-2):156-170, 2006, doi:10.1016/j.jsv.2005.09.034.
  12. Zhu, Z.Q. and Howe, D., “Influence of design parameters on cogging torque in permanent magnet machines,” IEEE Transactions on Energy Conversion 15(4):407-412, 2000, doi:10.1109/60.900501.
  13. Islam, R., Husain, I., Fardoun, A., and McLaughlin, K., “Permanent-Magnet Synchronous Motor Magnet Designs With Skewing for Torque Ripple and Cogging Torque Reduction,” IEEE Transactions on Industry Applications 45(1):152-160, 2009, doi:10.1109/TIA.2008.2009653.
  14. Dai, M., Keyhani, A., and Sebastian, T., “Torque ripple analysis of a PM brushless DC motor using finite element method,” IEEE Transactions on Energy Conversion 19(1): 40-45, 2004, doi:10.1109/TEC.2003.819105.
  15. LaRee, J. De and Boules, N., “Torque production in permanent-magnet synchronous motors,” IEEE Transactions on Industry Applications 25(1):107-112, 1989, doi:10.1109/28.18879.
  16. Jahns, T.M. and Soong, W.L., “Pulsating torque minimization techniques for permanent magnet AC motor drives-a review,” IEEE Transactions on Industrial Electronics 43(2):321-330, 1996, doi:10.1109/41.491356.
  17. Bianchi, N. and Bolognani, S., “Design techniques for reducing the cogging torque in surface-mounted PM motors,” IEEE Transactions on Industry Applications 38(5):1259-1265, 2002, doi:10.1109/TIA.2002.802989.
  18. Systèmes Dassault, ed., Abaqus 6.14 Analysis User's Guide, 2014.
  19. Systèmes Dassault, ed., Abaqus 6.14 Theory Guide, 2014.
  20. Dresig, H., “Schwingungen mechanischer Antriebssysteme: Modellbildung, Berechnung, Analyse, Synthese,” 2006.
  21. Skogestad, S. and Postlethwaite, I., “Multivariable Feedback Control - Analysis and Design.”

Cited By