This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Modelling of Non-Spherical Particle Evolution for Ice Crystals Simulation with an Eulerian Approach
Technical Paper
2015-01-2138
ISSN: 0148-7191,
e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
In this study a comparison is made between results from three Eulerian-based computational methods that predict the ice crystal trajectories and impingement on a NACA-0012 airfoil. The computational methods are being developed within CIRA (Imp2D/3D), ONERA (CEDRE/Spiree) and University of Twente (MooseMBIce). Eulerian models describing ice crystal transport are complex because physical phenomena, like drag force, heat transfer and phase change, depend on the particle's sphericity. Few correlations exist for the drag of non-spherical particles and heat transfer of these particles. The effect or non-spherical particles on the collection efficiency will be shown on a 2D airfoil.
Authors
Citation
Iuliano, E., Montreuil, E., Norde, E., Van der Weide, E. et al., "Modelling of Non-Spherical Particle Evolution for Ice Crystals Simulation with an Eulerian Approach," SAE Technical Paper 2015-01-2138, 2015, https://doi.org/10.4271/2015-01-2138.Also In
References
- Ganser, G.H., “A rational approach to drag prediction of spherical and nonspherical particles”, Powder Technology 77(2):143-152, 1993, doi:10.1016/0032-5910(93)80051-B.
- Haider, A. and Levenspiel, O., “Drag coefficient and terminal velocity of spherical and nonspherical particles”, Powder Technology 58(1):63-70, 1989, doi:10.1016/0032-5910(89)80008-7.
- Hölzer, A. and Sommerfeld, M., “New simple correlation formula for the drag coefficient of non-spherical particles”, Powder Technology 184(3):361-365, 2008, doi:10.1016/j.powtec.2007.08.021.
- Clift, R. and Gauvin, W.H., “The motion of particles in turbulent gas streams”, Proceedings Chemeca '70 1:14-24, 1970.
- Richter, A. and Nikrityuk, P.A., “Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers”, International Journal of Heat and Mass Transfer 55(4):1343-1354, 2012, doi:10.1016/j.ijheatmasstransfer.2011.09.005.
- Comer, J.K. and Kleinstreuer, C., “Computational analysis of convection heat transfer to non-spherical particles”, International Journal of Heat and Mass Transfer 38(17):3171-3180, 1995, doi:10.1016/0017-9310(95)00062-E.
- Ranz, W.E. and Marshall, W.R., Evaporation from drops - I and II, Chemical Engineering Progress 48(3):141-146 and 48(4):173-180, 1952.
- Le Touze, C., Murrone, A. and Guillard, H., “Multislope MUSCL method for general unstructured meshes”, Journal of Computational Physics 284:389-418, 2015, doi:10.1016/j.jcp.2014.12.032
- Van Leer, B., “Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method”, Journal of Computational Physics 32(1):101-136, 1979, doi:10.1016/0021-9991(79)90145-1