This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Measurement on Turbulent Premixed Flame Structure of CH4/H2/Air Mixtures with CO2 Dilution
Technical Paper
2015-01-1960
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Measurement on turbulent premixed CH4/H2/air flames was studied experimentally. Hydrogen blending ratio is defined as the ratio of hydrogen to fuel, while CO2 dilution ratio is defined as the mole fraction of CO2 to those of mixture. Hydrogen blending ratios up to 0.2 and CO2 dilution ratios up to 0.1 were studied. OH profile of the instantaneous flame front was detected using the OH-PLIF visualizations on a turbulent Bunsen burner. 500 OH-PLIF images were used to obtain the turbulent burning velocity and calculate flame surface density, and 280 images was used to calculate the local curvature radius.
Recommended Content
Authors
Citation
Wang, J., Yu, S., Nie, Y., Jin, W. et al., "Measurement on Turbulent Premixed Flame Structure of CH4/H2/Air Mixtures with CO2 Dilution," SAE Technical Paper 2015-01-1960, 2015, https://doi.org/10.4271/2015-01-1960.Also In
References
- Shrestha S. O. B. and Karim G. A.. Hydrogen as an additive to methane for spark ignition engine applications. International Journal of Hydrogen Energy. 1999, 24(6): 577-586.
- Hu E. J., Huang Z. H., Liu B., Zheng J. J., and Gu X. L.. Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas-hydrogen blends combining with EGR. International Journal of Hydrogen Energy. 2009, 34(2): 1035-1044.
- Wang J. H., Huang Z. H., Fang Y., Liu B., Zeng K., Miao H. Y., and Jiang D. M.. Combustion behaviors of a direct-injection engine operating on various fractions of natural gas-hydrogen blends. International Journal of Hydrogen Energy. 2007, 32(15): 3555-3564.
- Ma F. H., Wang Y., Liu H. Q., Li Y., Wang J. J., and Zhao S. L.. Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine. International Journal of Hydrogen Energy. 2007, 32(18): 5067-5075.
- Zhang Yingjia, Huang Zuohua, Wei Liangjie, and Niu Shaodong. Experimental and kinetic study on ignition delay times of methane/hydrogen/oxygen/nitrogen mixtures by shock tube. Chinese Science Bulletin. 2011, 56(26): 2853-2861.
- Hu E. J., Huang Z. H., He J. J., Jin C., and Zheng J. J.. Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames. International Journal of Hydrogen Energy. 2009, 34(11): 4876-4888.
- Fairweather M., Ormsby M. P., Sheppard C. G. W., and Woolley R.. Turbulent burning rates of methane and methane-hydrogen mixtures. Combustion and Flame. 2009, 156(4): 780-790.
- Nakahara M., Shirasuna T., and Hashimoto J.. Experimental Study on Local Flame Properties of Hydrogen Added Hydrocarbon Premixed Turbulent Flames. Journal of Thermal Science and Technology. 2009, 4(1): 190-201.
- Zhang Meng, Wang Jinhua, Xie Yongliang, Wei Zhilong, Jin Wu, Huang Zuohua, and Kobayashi Hideaki. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames. Experimental Thermal and Fluid Science. 2014, 52(0): 288-296.
- Zhang Meng, Wang Jinhua, Xie Yongliang, Jin Wu, Wei Zhilong, Huang Zuohua, and Kobayashi Hideaki. Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames. International Journal of Hydrogen Energy. 2013, 38(26): 11421-11428.
- Fu Jin, Tang Chenglong, Jin Wu, Thi Luong Dinh, Huang Zuohua, and Zhang Yang. Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph. International Journal of Hydrogen Energy. 2013, 38(3): 1636-1643.
- Kee R. J., Grcar J. F., Smooke M. D., Miller J. A., and Meeks E., A Program for Modeling Steady, Laminar, One-dimensional Premixed Flames 1985: Sandia National Laboratories, Albuquerque, NM.
- Kee Robert J., Rupley Fran M., Meeks Ellen, and Miller James A., A fortran chemical kinetics package for the analysis of gas- phase chemical and plasma kinetics. 1993: Sandia National Laboratories, Albuquerque, NM.
- Gregory P., Smith D. M., Golden Michael, Frenklach Nigel W., Moriarty Boris, Eiteneer Mikhail, Goldenberg C. Thomas, Bowman Ronald K., Hanson Soonho, Song William C., Jr. Gardiner, Lissianski, Vitali V., and Qin Zhiwei. 1994; Available from: http://www.me.berkeley.edu/gri_mech/.
- Dinkelacker F., Manickam B., and Muppala S. P. R.. Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combustion and Flame. 2011, 158(9): 1742-1749.
- Peters N., Turbulent Combustion. 2000, Cambridge University Press: Cambridge UK.
- Smallwood G. J., Gülder mer L., Snelling D. R., Deschamps B. M., and Gökalp I.. Characterization of Flame Front Surfaces in Turbulent Premixed Methane/Air Combustion. Combustion and Flame. 1995, 101: 461-470.
- Lee G. G., Huh K. Y., and Kobayashi H.. Measurement and analysis of flame surface density for turbulent premixed combustion on a nozzle-type burner. Combustion and Flame. 2000, 122(1-2): 43-57.
- Filatyev Sergei A., Driscoll James F., Carter Campbell D., and Donbar Jeffrey M.. Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combustion and Flame. 2005, 141(1-2): 1-21.
- Lipatnikov A. N. and Chomiak J.. Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Progress in Energy and Combustion Science. 2002, 28(1): 1-74.