This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
A Reduced Chemical Kinetic Mechanism of Toluene Reference Fuel (toluene/n-heptane) for Diesel Engine Combustion Simulations
Technical Paper
2015-01-0387
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
In the present study, we developed a reduced chemical reaction mechanism consisted of n-heptane and toluene as surrogate fuel species for diesel engine combustion simulation. The LLNL detailed chemical kinetic mechanism for n-heptane was chosen as the base mechanism. A multi-technique reduction methodology was applied, which included directed relation graph with error propagation and sensitivity analysis (DRGEPSA), non-essential reaction elimination, reaction pathway analysis, sensitivity analysis, and reaction rate adjustment. In a similar fashion, a reduced toluene mechanism was also developed. The reduced n-heptane and toluene mechanisms were then combined to form a diesel surrogate mechanism, which consisted of 158 species and 468 reactions. Extensive validations were conducted for the present mechanism with experimental ignition delay in shock tubes and laminar flame speeds under various pressures, temperatures and equivalence ratios related to engine conditions. The results showed the capability of the present mechanism to accurately predict the ignition delay and laminar flame speeds for n-heptane, toluene and diesel fuel under a wide range of experimental conditions. We also implemented the new mechanism in a multi-dimensional engine combustion simulation to predict the combustion characteristics of diesel engines. Good agreements in ignition timings, cylinder pressures and heat release rates were achieved between experimental and calculated results under the various engine operating conditions. In summary, the present mechanism represents the elementary reaction pathways of the detailed chemical kinetic mechanism well, and it is suitable to be used for diesel engine combustion simulations.
Recommended Content
Technical Paper | Modeling the Pollutant Emissions from a S.I. Engine |
Technical Paper | A Transient Spray Mixing Model for Diesel Combustion |
Authors
Topic
Citation
Xu, Z., Zhao, Z., Li, J., Wang, M. et al., "A Reduced Chemical Kinetic Mechanism of Toluene Reference Fuel (toluene/n-heptane) for Diesel Engine Combustion Simulations," SAE Technical Paper 2015-01-0387, 2015, https://doi.org/10.4271/2015-01-0387.Also In
References
- Reitz , R.D. Directions in internal combustion engine research Combustion and Flame 160 1 1 8 2013 10.1016/j.combustflame.2012.11.002
- Kokjohn , S. L. , Hanson , R. M. , Splitter , D. A. , and Reitz , R. D. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion International Journal of Engine Research 12 3 209 226 2011 10.1177/1468087411401548
- Westbrook , C.K. , Mizobuchi , Y. , Poinsot , T.J. , Smith , P.J. et al. Computational combustion Proceedings of the Combustion Institute 30 1 125 157 2005 10.1016/j.proci.2004.08.275
- Farrell , J. , Cernansky , N. , Dryer , F. , Law , C. et al. Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels SAE Technical Paper 2007-01-0201 2007 10.4271/2007-01-0201
- Pitz , W.J. , and Mueller , C.J. Recent progress in the development of diesel surrogate fuels Progress in Energy and Combustion Science 37 3 330 350 2011 10.1016/j.pecs.2010.06.004
- Andrae , J. C. G. , Björnbom , P. , Cracknell , R. F. , and Kalghatgi , G. T. Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics Combustion and Flame 149 1-2 2 24 2007 10.1016/j.combustflame.2006.12.014
- Sivaramakrishnan , R. , Tranter , R. S. , and Brezinsky , K. A high pressure model for the oxidation of toluene Proceedings of the Combustion Institute 30 1 1165 1173 2005 10.1016/j.proci.2004.08.128
- Sakai , Y. , Miyoshi , A. , Koshi , M. , and Pitz , W.J. A kinetic modeling study on the oxidation of primary reference fuel-toluene mixtures including cross reactions between aromatics and aliphatics Proceedings of the Combustion Institute 32 1 411 418 2009 10.1016/j.proci.2008.06.154
- Oehlschlaeger , M.A. , Davidson , D.F. , and Hanson , R.K. Thermal decomposition of toluene: Overall rate and branching ratio Proceedings of the Combustion Institute 31 1 211 219 2007 10.1016/j.proci.2006.07.002
- Sakai , Y. , Inamura , T. , Ogura , T. , Koshi , M. et al. Detailed Kinetic Modeling of Toluene Combustion over a Wide Range of Temperature and Pressure SAE Technical Paper 2007-01-1885 2007 10.4271/2007-01-1885
- Mehl , M. , Pitz , W.J. , Westbrook , C.K. , and Curran , H.J. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions Proceedings of the Combustion Institute 33 1 193 200 2011 10.1016/j.proci.2010.05.027
- Chen , W.M. , Shuai , S.J. , and Wang , J.X. A soot formation embedded reduced reaction mechanism for diesel surrogate fuel Fuel 88 10 1927 1936 2009 10.1016/j.fuel.2009.03.039
- Mittal , G. , and Sung , C.J. Autoignition of toluene and benzene at elevated pressures in a rapid compression machine Combustion and Flame 150 4 355 368 2007 10.1016/j.combustflame.2007.04.014
- Lu , T.F. , and Law , C.K. Toward accommodating realistic fuel chemistry in large-scale computations Progress in Energy and Combustion Science 35 2 192 215 2009 10.1016/j.pecs.2008.10.002
- Lu , T.F. , and Law , C.K. A directed relation graph method for mechanism reduction Proceedings of the Combustion Institute 30 1 1333 1341 2005 10.1016/j.proci.2004.08.145
- Lu , T.F. , and Law , C.K. On the applicability of directed relation graphs to the reduction of reaction mechanisms Combustion and Flame 146 3 472 483 2006 10.1016/j.combustflame.2006.04.017
- Lu , T.F. , and Law , C.K. Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane Combustion and Flame 144 1-2 24 36 2006 10.1016/j.combustflame.2005.02.015
- Niemeyer , K.E. , and Sung , C.J. On the importance of graph search algorithms for DRGEP-based mechanism reduction methods Combustion and Flame 158 8 1439 1443 2011 10.1016/j.combustflame.2010.12.010
- Lu , T.F. , and Law , C.K. Strategies for mechanism reduction for large hydrocarbons: n-heptane Combustion and Flame 154 1-2 153 163 2008 10.1016/j.combustflame.2007.11.013
- Niemeyer , K.E. , Sung , C.J. , and Raju , M.P. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis Combustion and Flame 157 9 1760 1770 2010 10.1016/j.combustflame.2009.12.022
- Bhattacharjee , B. , Schwer , D.A. , Barton , P.I. , and Green , W.H. Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms Combustion and Flame 135 3 191 208 2003 10.1016/S0010-2180(03)00159-7
- Brakora , J. , Ra , Y. , Reitz , R. , McFarlane , J. et al. Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations SAE Int. J. Fuels Lubr. 1 1 675 702 2009 10.4271/2008-01-1378
- Wang , H. , Jiao , Q. , Yao , M. , Yang , B. et al. Development of an n-heptane/toluene/polyaromatic hydrocarbon mechanism and its application for combustion and soot prediction International Journal of Engine Research 14 5 434 451 2013 10.1177/1468087412471056
- Hernández , J.J. , Sanz-Argent , J. , and Monedero-Villalba , E. A reduced chemical kinetic mechanism of a diesel fuel surrogate (n-heptane/toluene) for HCCI combustion modelling Fuel 133 283 291 2014 10.1016/j.fuel.2014.05.029
- Pepiot-Desjardins , P. , and Pitsch , H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms Combustion and Flame 154 1-2 67 81 2008 10.1016/j.combustflame.2007.10.020
- Mehl , M. , Pitz , W. , Sjöberg , M. , and Dec , J. Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine SAE Technical Paper 2009-01-1806 2009 10.4271/2009-01-1806
- Curran , H. J. , Gaffuri , P. , Pitz , W. J. , and Westbrook , C. K. A Comprehensive Modeling Study of n-Heptane Oxidation Combustion and Flame 114 1-2 149 177 1998 10.1016/S0010-2180(97)00282-4
- Pitz , W.J , Seiser , R. , Bozzelli , J.W. , Da Costa , I. et al. Chemical Kinetic. Characterization of Combustion of Toluene Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute 2001
- Li , J.C. Study on the Development of a Biodiesel Chemical Mechanism Model and Its Application to Engine Combustion Analysis Hunan University Ph.D. thesis 2014
- Shen , H.P. , Steinberg , J. , and Vanderover , J. A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n-Tetradecane at Elevated Pressures Energy & Fuels 23 5 2482 2489 2009 10.1021/ef8011036
- Hartmann , M. , Gushterova , I. , Fikri , M. , Schulz , C. et al. Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling Combustion and Flame 158 1 172 178 2011 10.1016/j.combustflame.2010.08.005
- Fieweger , K. , Blumenthal , R. , and Adomeit , G. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure Combustion and Flame 109 4 599 619 1997 10.1016/S0010-2180(97)00049-7
- Minetti , R. , Carlier , M. , Ribaucour , M. , Therssen , E. et al. A rapid compression machine investigation of oxidation and auto-ignition of n-Heptane: Measurements and modeling Combustion and Flame 102 3 298 309 1995 10.1016/0010-2180(94)00236-L
- Jerzembeck , S. , Peters , N. , Pepiotdesjardins , P. , and Pitsch , H. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation Combustion and Flame 156 2 292 301 2009 10.1016/j.combustflame.2008.11.009
- Byun , J.J. Laminar Burning Velocities and Laminar Flame Speeds of Multi-Component Fuel Blends at Elevated Temperatures and Pressures The University of Texas Austin Ph.D. Thesis 2011
- Van Lipzig , J. P. J. , Nilsson , E. J. K. , de Goey , L. P. H. , and Konnov , A. A. Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures Fuel 90 8 2773 2781 2011 10.1016/j.fuel.2011.04.029
- Sileghem , L. , Alekseev , V. A. , Vancoillie , J. , Van Geem , K. M. et al. Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene Fuel 112 355 365 2013 10.1016/j.fuel.2013.05.049
- Lu , X , Ji , L , Zu , L. , Hou , Y. et al. Experimental study and chemical analysis of n-heptane homogeneous charge compression ignition combustion with port injection of reaction inhibitors Combustion and Flame 149 3 261 270 2007 10.1016/j.combustflame.2007.01.002
- Andrae , J. C. G. , Brinck , T. , and Kalghatgi , G. T. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model Combustion and Flame 155 4 696 712 2008 10.1016/j.combustflame.2008.05.010
- Hernandez , J. J. , Sanz-Argent , J. , Benajes , J. , and Molina , S. Selection of a diesel fuel surrogate for the prediction of auto-ignition under HCCI engine conditions Fuel 87 6 655 665 2008 10.1016/j.fuel.2007.05.019
- Ra , Y. , and Reitz , R.D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels Combustion and Flame 155 4 713 738 2008 10.1016/j.combustflame.2008.05.002
- Saisirirat , P. , Foucher , F. , Chanchaona , S. , and Mounaïm-Rousselle , C. A Study of n-HeptaneEthanol HCCI Combustion Characteristics by Experiment and Detailed Chemical Kinetics Simulation Proceedings of the European Combustion Meeting 2009
- Vuilleumier , D. , Kozarac , D. , Mehl , M. , Saxena , S. et al. Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study Combustion and Flame 161 3 680 695 2014 10.1016/j.combustflame.2013.10.008
- Mittal , G. , and Sung , C.J. A Rapid Compression Machine for Chemical Kinetics Studies at Elevated Pressures And Temperatures Combustion Science and Technology 179 3 497 530 2007 10.1080/00102200600671898
- Gauthier , B. M. , Davidson , D. F. , and Hanson , R. K. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures Combustion and Flame 139 4 300 311 2004 10.1016/j.combustflame.2004.08.015
- Ciezki , H. K. , and Adomeit , G. Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions Combustion and Flame 93 4 421 433 1993 10.1016/0010-2180(93)90142-P
- Shen , H.P. , Vanderover , J. , and Oehlschlaeger , M.A. A shock tube study of the auto-ignition of toluene/air mixtures at high pressures Proceedings of the Combustion Institute 32 1 165 172 2009 10.1016/j.proci.2008.05.004
- Vasudevan , V. , Davidson , D. F. , and Hanson , R. K. Shock tube measurements of toluene ignition times and OH concentration time histories Proceedings of the Combustion Institute 30 1 1155 1163 2005 10.1016/j.proci.2004.07.039
- Pitz , W. J. , Seiser , R. , Bozzelli , J.W. , Seshadri , K. et al. Chemical Kinetic Study of Toluene Oxidation under Premixed and NonpremixedConditions Lawrence Livermore National Laboratory UCRL-CONF-201575 2003
- Morgan , Neal , Smallbone , Andrew , Bhave , Amit , Kraft , Markus et al. Mapping surrogate gasoline compositions into RON/MON space Combustion and Flame 157 6 1122 1131 2010 10.1016/j.combustflame.2010.02.003
- Smallbone , A. , Morgan , N. , Bhave , A. , Kraft , M. et al. Simulating Combustion of Practical Fuels and Blends for Modern Engine Applications Using Detailed Chemical Kinetics SAE Technical Paper 2010-01-0572 2010 10.4271/2010-01-0572
- Herzler , J. , Fikri , M. , Hitzbleck , K. , Starke , R. et al. Shock-tube study of the autoignition of n-heptane/toluene/air mixtures at intermediate temperatures and high pressures Combustion and Flame 149 1-2 25 31 2007 10.1016/j.combustflame.2006.12.015
- Gerstein , M. , Levine , O. , and Wong , E.L. Flame Propagation. II. The Determination of Fundamental Burning Velocities of Hydrocarbons by a Revised Tube Method Journal of the American Chemical Society 73 1 418 422 1951 10.1021/ja01145a136
- Heimel , S. , and Weast , R.C. Effect of initial mixture temperature on the burning velocity of benzene-air, n-heptane-air, and isooctane-air mixtures Symposium (International) on Combustion 6 1 296 302 1957 10.1016/S0082-0784(57)80042-3
- Davis , S. G. , and Law , C. K. Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames Symposium (International) on Combustion 27 1 521 527 1998 10.1016/S0082-0784(98)80442-6
- Kumar , K. , Freeh , J. E. , Sung , C. J. , and Huang , Y. Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures Journal of Propulsion and Power 23 2 428 436 2007 10.2514/1.24391
- Chong , C.T. , and Hochgreb , S. Measurements of laminar flame speeds of liquid fuels: Jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV) Proceedings of the Combustion Institute 33 1 979 986 2011 10.1016/j.proci.2010.05.106
- Huang , Y. , Sung , C.J. , and Eng , J. A. Laminar flame speeds of primary reference fuels and reformer gas mixtures Combustion and Flame 139 3 239 251 2004 10.1016/j.combustflame.2004.08.011
- CHEMKIN-PRO Reaction Design San Diego 2008
- Hirasawa , T. , Sung , C. J. , Joshi , A. , Yang , Z. et al. Determination of laminar flame speeds using digital particle image velocimetry: Binary Fuel blends of ethylene, n-Butane, and toluene Proceedings of the Combustion Institute 29 2 1427 1434 2002 10.1016/S1540-7489(02)80175-4
- Dirrenberger , P. , Glaude , P. A. , Bounaceur , R. , Le Gall , H. et al. Laminar burning velocity of gasolines with addition of ethanol Fuel 115 0 162 169 2014 10.1016/j.fuel.2013.07.015
- Johnston , R. J. , and Farrell , J. T. Laminar burning velocities and Markstein lengths of aromatics at elevated temperature and pressure Proceedings of the Combustion Institute 30 1 217 224 2005 10.1016/j.proci.2004.08.075
- Amsden , A. A. Kiva-3v, release 2, improvements to kiva-3v Los Alamos National Laboratory LA-13608-MS 1999
- Wang , M.Z. , and Lee , C.F. Efficient Computation Methods for Combustion Reaction Kinetics ASME ICEF2014-5648 2014 10.1115/ICEF2014-5648
- O'Rourke , P. and Amsden , A. The Tab Method for Numerical Calculation of Spray Droplet Breakup SAE Technical Paper 872089 1987 10.4271/872089
- Zeng , Y.B. , and Lee , C.F. A preferential vaporization model for multicomponent droplets and sprays Atomization and Sprays 12 1-3 163 186 2002 10.1615/AtomizSpr.v12.i123.90
- Han , Z. , and Reitz , R. D. Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models Combustion Science and Technology 106 4-6 267 295 1995 10.1080/00102209508907782
- Magnussen , B. F. , and Hjertager , B. H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion Symposium (International) on Combustion 16 1 719 729 1977 10.1016/S0082-0784(77)80366-4
- O'Rourke , P.J. Collective Drop Effects on Vaporizing Liquid Sprays Princeton University Ph.D. thesis 1981