This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluation and Development of Chemical Kinetic Mechanism Reduction Scheme for Biodiesel and Diesel Fuel Surrogates

Journal Article
2013-01-2630
ISSN: 1946-3952, e-ISSN: 1946-3960
Published October 14, 2013 by SAE International in United States
Evaluation and Development of Chemical Kinetic Mechanism Reduction Scheme for Biodiesel and Diesel Fuel Surrogates
Sector:
Citation: Poon, H., Ng, H., Gan, S., Pang, K. et al., "Evaluation and Development of Chemical Kinetic Mechanism Reduction Scheme for Biodiesel and Diesel Fuel Surrogates," SAE Int. J. Fuels Lubr. 6(3):729-744, 2013, https://doi.org/10.4271/2013-01-2630.
Language: English

References

  1. Shafiee , S. and Topal , E. When will fossil fuel reserves be diminished? Energy Policy 37 1 181 189 2009
  2. Lior , N. Energy resources and use the present situation and possible paths to the future Energy 2008
  3. Lu , T. and Law , C.K. A directed relation graph method for mechanism reduction Proceedings of the Combustion Institute 30 1 1333 1341 2005
  4. Lu , T. and Law , C.K. Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane Combustion and flame 144 24 36 2006
  5. Zheng , X.L. , Lu , T. and Law , C.K. Experimental counterflow ignitions temperature and reaction mechanisms of 1,3-butadiene Proceedings of the Combustion Institute 31 367 375 2007
  6. Sankaran , R. , Hawkes , E.R. , Chen , J.H. , Lu , T. et al. Structure of a spatially developing turbulent lean methane-air Bunsen flame Proceedings of the Combustion Institute 31 1 1291 1298 2007
  7. Pepiot , P. and Pitsch , H. Systematic reduction of large chemical mechanisms 4th joint meeting of the U.S. Sections of the Combustion Institute 2005
  8. Niemeyer , K.E. , Sung , C. and Raju , M.P. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis Combustion and flame 157 9 1760 1770 2010
  9. Raju , M.P. , Sung , C. and Kundu , K. Integrating sensitivity analysis into directed relation graph with error propagation for effective chemical mechanism reduction 2007
  10. Zsély , I.G. , Nagy , T. , Simmie , J.M. and Curran , H.J. Reduction of a detailed kinetic model for the ignition of natural gas mixtures at gas turbine conditions 2009
  11. Turányi , T. Reduction of large reaction mechanisms New J. Chem. 14 795 803 1990
  12. Tomlin , A.S. , Pilling , M.J. , Turányi , T. , Merkin , J.H. and Brindley , J. Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyses Combustion and flame 91 107 130 1992
  13. Tomlin , A.S. , Turányi , T. and Pilling , M.J. Mathematical tools for the construction, investigation and reduction of combustion mechanisms in: ‘Low temperature combustion and autoignition’ Comprehensive chemical kinetics 35 293 437 1997
  14. Pepiot , P. and Pitsch , H. An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms Combustion theory and modeling 12 6 1089 1108 2008
  15. Ahmed , S.S. , Mauß , F. , Moréac , G. and Zeuch , T. A comprehensive and compact n-heptane oxidation model derived using chemical lumping Advanced article 2007 10.1039/b614712g
  16. Lu , T. and Law , C.K. Strategies for mechanism reduction for large hydrocarbons: n-heptane Combustion and flame 154 153 163 2008
  17. Brakora , J. , Ra , Y. , and Reitz , R. Combustion Model for Biodiesel-Fueled Engine Simulations using Realistic Chemistry and Physical Properties SAE Int. J. Engines 4 1 931 947 2011 10.4271/2011-01-0831
  18. Herbinet , O. , Pitz , W.J. and Westbrook , C.K. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate Combustion and flame 157 5 893 908 2010
  19. Curran , H.J. , Gaffuri , P. , Pitz , W.J. and Westbrook , C.K. A comprehensive modeling study of n-heptane oxidation Combustion and Flame 114 1-2 149 177 1998
  20. Curran , H.J. , Gaffuri , P. , Pitz , W.J. and Westbrook , C.K. A comprehensive modeling study of iso-octane oxidation Combustion and Flame 129 3 253 280 2002
  21. Niemeyer , K.E. and Sung , C. DRGEP-based mechanism reduction strategies: graph searching algorithms and skeletal primary reference fuel mechanisms 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2011
  22. Liang , L. , Stevens , J. and Farrell , J. T. A dynamic adaptive chemistry scheme for reactive flow computations Proceedings of the Combustion Institute 32 1 527 534 2009
  23. Liang , L. , Stevens , J.G. , Raman , S. and Farrell , J.T. The use of dynamic adaptive chemistry in combustion simulation of gasoline surrogate fuels Combustion and flame 156 7 1493 1502 2009
  24. Shi , Y. , Liang , L. , Ge , H.W. and Reitz , R.D. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes Combustion theory and modeling 14 1 69 89 2010
  25. Shi , Y. , Ge , H.W. , Brakora , J.L. , and Reitz , R.D. Automatic Chemistry Mechanism Reduction of Hydrocarbon Fuels for HCCI Engines Based on DRGEP and PCA Methods with Error Control Energy and Fuels 24 1646 1654 2010
  26. Cormen , T.H. , Leiserson , C.E. , Rivest , R.L. and Stein , C. Introduction to Algorithms 2 nd Cambridge, MA MIT Press 2001
  27. Dijkstra , E.W. A note on two problems in connexion with graphs Numerical mathematics 1 269 271 1959
  28. Westbrook , C.K. , Pitz , W.J. , Herbinet , O. , Curran , H.J. et al. A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons from n-Octane to n-Hexadecane Combustion and flame 156 1 181 199 2009
  29. Farrell , J. , Cernansky , N. , Dryer , F. , Law , C. et al. Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels SAE Technical Paper 2007-01-0201 2007 10.4271/2007-01-0201
  30. Chaos , M. , Kazakov , A. , Zhao , Z. and Dryer , F.L. Model development and reduction methods for high-temperature large alkane molecule kinetics 31 st International Symposium on Combustion 2006
  31. Combustion Vessel Geometry: 2009 to Present Cross-optical, cube-shaped vessel Engine Combustion Network http://www.sandia.gov/ecn/cvdata/sandiaCV/vesselGeometry-2009.php May 10 2012
  32. Liu , A.B. and Reitz , R.D. Mechanism of air-assisted liquid atomization 3 55 75 1993
  33. Beale , J.C. and Reitz , R.D. Modeling spray atomization with the Kelvin-Helmholtz/ Rayleigh-Taylor hybrid model Atomization and sprays 9 623 650 1999
  34. Reitz , R.D. Mechanisms of atomization processes in high-pressure vaporizing sprays Atomization and spray technology 3 309 337 1987
  35. Launder , B.E. and Spalding , D.B. Lectures in mathematical models of turbulence London, England Academic Press 1972
  36. Kook , S. and Pickett , L. Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions SAE Int. J. Fuels Lubr. 5 2 647 664 2012 10.4271/2012-01-0678
  37. Guthrie , J. , Fowler , P. and Sabourin , R. Gasoline and diesel fuel survey 2003
  38. Grumman , N. Diesel fuel oils, 2003 Report NGMS-232 PPS 2004
  39. Dagaut , P. , Gaϊl , S. and Sahasrabudhe , M. Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature, and equivalence ratio: experimental and modeling kinetic study Proceedings of the Combustion Institute 31 2 2955 2961 2007
  40. Dagaut , P. and Gaϊl , S. Chemical kinetic study of the effect of a biofuel additive on Jet-A1 combustion Journal of Physical Chemistry A 111 19 3992 4000 2007

Cited By