This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Predicting Failure during Sheared Edge Stretching Using a Damage-Based Model for the Shear-Affected Zone

Published April 8, 2013 by SAE International in United States
Predicting Failure during Sheared Edge Stretching Using a Damage-Based Model for the Shear-Affected Zone
Sector:
Citation: Butcher, C., Anderson, D., and Worswick, M., "Predicting Failure during Sheared Edge Stretching Using a Damage-Based Model for the Shear-Affected Zone," SAE Int. J. Mater. Manf. 6(2):304-312, 2013, https://doi.org/10.4271/2013-01-1166.
Language: English

Abstract:

Hole expansion of a dual phase steel, DP600, was numerically investigated using a damage-based constitutive law to predict failure. The parameters governing void nucleation and coalescence were identified from an extensive review of the x-ray micro-tomography data available in the literature to ensure physically-sound predictions of damage evolution. A recently proposed technique to experimentally quantify work-hardening and damage in the shear-affected zone is incorporated into the damage model to enable fracture predictions of holes with sheared edges. Finite-element simulations of a hole expansion test with a conical punch were performed for both a punched and milled hole edge condition and the predicted hole expansion ratios are in very good agreement with the experiment values reported by several researchers.