This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

Journal Article
2012-32-0031
ISSN: 1946-3952, e-ISSN: 1946-3960
Published October 23, 2012 by SAE International in United States
Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray
Sector:
Citation: Kobashi, Y., Maekawa, H., Kato, S., and Senda, J., "Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray," SAE Int. J. Fuels Lubr. 5(3):1404-1413, 2012, https://doi.org/10.4271/2012-32-0031.
Language: English

Abstract:

Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency. Numerical investigation into the pressure rise rate reduction mechanism was also performed by use of a multi-component fuel model developed by the authors. The calculated result showed that the pressure rise rate was reduced due to the difference in the vapor concentrations between two components which have difference reactivity.