Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

Published April 16, 2012 by SAE International in United States
Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection
Sector:
Citation: Ra, Y., Loeper, P., Andrie, M., Krieger, R. et al., "Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection," SAE Int. J. Engines 5(3):1109-1132, 2012, https://doi.org/10.4271/2012-01-1131.
Language: English

References

  1. Iwabuchi, Y., Kawai, K., Shoji, T., and Takeda, Y., “Trial of New Concept Diesel Combustion System - Premixed Compression- Ignited Combustion,” SAE Technical Paper 1999-01-0185, 1999, doi:10.4271/1999-01-0185.
  2. Kanda, T., Hakozaki, T., Uchimoto, T., Hatano, J. et al., “PCCI Operation with Early Injection of Conventional Diesel Fuel,” SAE Technical Paper 2005-01-0378, 2005, doi:10.4271/2005-01-0378.
  3. Opat, R., Ra, Y., Gonzalez, D., M., Krieger, R. et al., “Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine,” SAE Technical Paper 2007-01-0193, 2007, doi:10.4271/2007-01-0193.
  4. Krieger, R., Siewert, R., Pinson, J., Gallopoulos, N. et al., “Diesel Engines: One Option to Power Future Personal Transportation Vehicles,” SAE Technical Paper 972683, 1997, doi: 10.4271/972683.
  5. Kimura, S., Aoki, O., Ogawa, H., Muranaka, S. et al., “New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines,” SAE Technical Paper 1999-01-3681, 1999, doi:10.4271/1999-01-3681.
  6. Kimura, S., Aoki, O., Kitahara, Y., and Aiyoshizawa, E., “Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards,” SAE Technical Paper 2001-01-0200, 2001, doi:10.4271/2001-01-0200.
  7. Kimura, S., Ogawa, H., Matsui, Y., and Enomoto, Y., “An experimental analysis of low temperature and premixed combustion for simultaneous reduction of of NOx and particulate emissions in DI diesel engines,” Int. J. Engine Research, 3, 249-259, 2002.
  8. Hashizume, T., Miyamoto, T., Hisashi, A., and Tsujimura, K., “Combustion and Emission Characteristics of Multiple Stage Diesel Combustion,” SAE Technical Paper 980505, 1998, doi: 10.4271/980505.
  9. Neely, G., Sasaki, S., Huang, Y., Leet, J. et al., “New Diesel Emission Control Strategy to Meet US Tier 2 Emissions Regulations,” SAE Technical Paper 2005-01-1091, 2005, doi:10.4271/2005-01-1091.
  10. Ra, Y., Loeper, P., Reitz, R., Andrie, M. et al., “Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime,” SAE Int. J. Engines 4(1):1412-1430, 2011, doi:10.4271/2011-01-1182.
  11. Shimazaki, N., Tsurushima, T., and Nishimura, T., “Dual Mode Combustion Concept With Premixed Diesel Combustion by Direct Injection Near Top Dead Center,” SAE Technical Paper 2003-01-0742, 2003, doi:10.4271/2003-01-0742.
  12. Kalghatgi, G., “Auto-Ignition Quality of Practical Fuels and Implications for Fuel Requirements of Future SI and HCCI Engines,” SAE Technical Paper 2005-01-0239, 2005, doi:10.4271/2005-01-0239.
  13. Kalghatgi, G., Risberg, P., and Ångström, H., “Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion,” SAE Technical Paper 2006-01-3385, 2006, doi:10.4271/2006-01-3385.
  14. Kalghatgi, G., Risberg, P., and Ångström, H., “Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel,” SAE Technical Paper 2007-01-0006, 2007, doi:10.4271/2007-01-0006.
  15. Weall, A. and Collings, N., “Investigation into Partially Premixed Combustion in a Light-Duty Multi-Cylinder Diesel Engine Fuelled Gasoline and Diesel with a Mixture of,” SAE Technical Paper 2007-01-4058, 2007, doi:10.4271/2007-01-4058.
  16. Hildingsson, L., Kalghatgi, G., Tait, N., Johansson, B. et al., “Fuel Octane Effects in the Partially Premixed Combustion Regime in Compression Ignition Engines,” SAE Technical Paper 2009-01-2648, 2009, doi:10.4271/2009-01-2648.
  17. Ra, Y., Yun, J. E., and Reitz, R.D. “Numerical simulation of diesel and gasoline-fueled compression ignition combustion with high pressure late direct injection,” Int. J. Vehicle Design, Vol. 50, Nos. 1/2/3/4. pp. 3-34, 2009.
  18. Ra, Y., Yun, J.E., and Reitz, R.D., Numerical Parametric Study of Diesel Engine Operation with Gasoline, Combust. Sci. and Tech., 181: 350-378, 2009.
  19. Manente, V., Sonder, M., Johansson, B., Tunestal, P., “Gasoline Partially Premixed Combustion: High Efficiency, Low NOx and Low Soot by using an Advanced Combustion Strategy and a Compression Ignition Engine,” Proceedings of International Conference on “Fuels” and “Combustion in Engines, Istanbul Technical University, November 2009.
  20. Kalghatgi, G., Hildingsson, L., and Johansson, B., “Low NOx and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels,” Journal of Engineering for Gas Turbines and Power, Vol. 132(9), Article 092803, 2010.
  21. Sellnau, M., Sinnamon, J., Hoyer, K., and Husted, H., “Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions,” SAE Int. J. Engines 4(1):2010-2022, 2011, doi:10.4271/2011-01-1386.
  22. Amsden, A.A., “KIVA-3V, Release 2, Improvements to KIVA-3V,” LA-UR-99-915, 1999.
  23. Kee, R.J., Rupley, F.M., Miller, J.A., “CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics,” Sandia Report SAND 89-8009, 1989.
  24. Beale, J.C., and Reitz, R.D., “Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model. Atomization and Sprays, 9, 623-650, 1999.
  25. Liu, A., Mather, D., and Reitz, R., “Modeling the Effects of Drop Drag and Breakup on Fuel Sprays,” SAE Technical Paper 930072, 1993, doi: 10.4271/930072.
  26. Ra, Y., and Reitz, R.D., “A vaporization model for discrete multi-component fuel sprays,” Int. J. Multiphase Flow 35, 101-117, 2009.
  27. O'Rourke, P. and Amsden, A., “A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines,” SAE Technical Paper 961961, 1996, doi: 10.4271/961961.
  28. Han, Z., and Reitz, R.D., “Turbulence Modeling of Internal Combustion Engines Using RNG k-e models,” Comb. Sci. Tech., 106, 267-295, 1995.
  29. Ra, Y., and Reitz, R.D., “A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations with Primary Reference Fuels,” Combustion and Flame, 155, 713-738, 2008.
  30. Hessel, R., Foster, D., Aceves, S., Davisson, M. et al., “Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios,” SAE Technical Paper 2008-01-0047, 2008, doi:10.4271/2008-01-0047.
  31. Genzale, C., Reitz, R., and Musculus, M., “Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine,” SAE Int. J. Engines 1(1):913-937, 2009, doi:10.4271/2008-01-1330.
  32. Fieweger, K., Blumenthal, R., and Adomeit, G., “Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure,” Combustion and Flame, 109, 599-619, 1997.
  33. Hiroyasu, H. and Kadota, T., “Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines,” SAE Technical Paper 760129, 1976, doi: 10.4271/760129.
  34. Koci, C., Ra, Y., Krieger, R., Andrie, M. et al., “Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime,” SAE Int. J. Engines 2(1):858-879, 2009, doi:10.4271/2009-01-0928.
  35. Das Adhikary, B., Ra, Y., Reitz, R., and Ciatti, S., “Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline,” SAE Technical Paper 2012-01-1336, 2012, doi:10.4271/2012-01-1336.

Cited By