This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Path-following and a Speed Control Driver Model for an Electric Vehicle

Journal Article
2012-01-0250
ISSN: 1946-4614, e-ISSN: 1946-4622
Published April 16, 2012 by SAE International in United States
Development of a Path-following and a Speed Control Driver Model for an Electric Vehicle
Sector:
Citation: Jalali, K., Lambert, S., and McPhee, J., "Development of a Path-following and a Speed Control Driver Model for an Electric Vehicle," SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 5(1):100-113, 2012, https://doi.org/10.4271/2012-01-0250.
Language: English

Abstract:

A two-passenger all-wheel-drive urban electric vehicle (AUTO21EV) with four in-wheel motors and an active steering system has been designed and developed at the University of Waterloo. In order to evaluate the handling and performance of such a vehicle in the design stage and analyze the effectiveness of different chassis control systems before implementing them in the real vehicle, the simulation of a large number of different open-loop and closed-loop test maneuvers is necessary. Thus, in the simulation environment, not only is a mathematical vehicle model needed for every test maneuver, but a driver model must also be designed to simulate the closed-loop test maneuvers. The role of the driver model is to calculate the control inputs required to successfully follow a predefined path. Such a driver model can be implemented as an inverse dynamics problem or by a representation of a driver that can look ahead, preview the path, and change the steering wheel angle and acceleration or brake pedal positions accordingly. In this regard, a path-following driver model is developed in this work with an advanced path previewing technique. In addition, a gain scheduling speed control driver model is developed for the AUTO21EV, which adjusts the drive torques of the wheels to minimize the deviation between the desired and actual vehicle speeds.