This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Improved Finite Element-Based Model for Reliability Assessment of a Profile-Type Automotive Body Experiencing Uncertain Loading Conditions and Material Properties

Journal Article
2011-01-0731
ISSN: 1946-3979, e-ISSN: 1946-3987
Published April 12, 2011 by SAE International in United States
An Improved Finite Element-Based Model for Reliability Assessment of a Profile-Type Automotive Body Experiencing Uncertain Loading Conditions and Material Properties
Sector:
Citation: Shariyat, M. and Rajabi Ghahnavieh, M., "An Improved Finite Element-Based Model for Reliability Assessment of a Profile-Type Automotive Body Experiencing Uncertain Loading Conditions and Material Properties," SAE Int. J. Mater. Manuf. 4(1):957-968, 2011, https://doi.org/10.4271/2011-01-0731.
Language: English

Abstract:

Beam-type structural elements are generally utilized in construction of majority of the automotive structures, e.g. the buses, trailers, and solid axles. These components are usually subjected to spatially-random or uncertain load conditions during their service lives. Moreover, material properties of the beams-type structural elements may vary from a sample to another in a random manner. The situation will be more complex when both material properties and load conditions exhibit random natures in the spatial domain. In the present paper, an algorithm is presented to assess the probabilistic behavior of the beam-type vehicle's components in relation with the strength and deflection requirements. A consistent finite element reliability model that may be employed for beams with arbitrary inclinations under simultaneous spatially-random loading conditions and random material properties is introduced. The stochastic method is proposed based on the autocorrelation, power spectral density, and variability concepts. The stress stochastic formulations are proposed in the present paper, for the first time.