This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Application of a Tunable-Diode-Laser Absorption Diagnostic for CO Measurements in an Automotive HCCI Engine

Journal Article
2010-01-2254
ISSN: 1946-3936, e-ISSN: 1946-3944
Published October 25, 2010 by SAE International in United States
Application of a Tunable-Diode-Laser Absorption Diagnostic for CO Measurements in an Automotive HCCI Engine
Citation: Fitzgerald, R. and Steeper, R., "Application of a Tunable-Diode-Laser Absorption Diagnostic for CO Measurements in an Automotive HCCI Engine," SAE Int. J. Engines 3(2):396-407, 2010, https://doi.org/10.4271/2010-01-2254.
Language: English

References

  1. Varghese, P. L. Hanson, R. K. “Collision Width Measurements of CO in Combustion Gases Using a Tunable Diode-Laser,” JQSRT 26 4 339 347 1981
  2. Miller, J. H. Elreedy, S. Ahvazi, B. Woldu, F. Hassanzadeh, P. “Tunable Diode-Laser Measurement of Carbon-Monoxide Concentration and Temperature in a Laminar Methane Air Diffusion Flame,” Applied Optics 32 30 6082 6089 1993
  3. Skaggs, R. R. Miller, J. H. “A Study of Carbon-Monoxide in a Series of Laminar Ethylene Air Diffusion Flames Using Tunable Diode-Laser Absorption-Spectroscopy,” Combustion and Flame 100 3 430 439 1995
  4. Everest, D. A. Shaddix, C. R. Smyth, K. C. “Quantitative Two-Photon Laser-Induced Fluorescence Imaging of CO in Flickering CH 4 /Air Diffusion Flames,” Twenty-Sixth Symposium (International) on Combustion 26 1161 1169 1996
  5. Nicolas, J. C. Baranov, A. N. Cuminal, Y. Rouillard, Y. Alibert, C. “Tunable Diode Laser Absorption Spectroscopy of Carbon Monoxide Around 2.35 mm,” Applied Optics 37 33 7906 7911 1998
  6. Upschulte, B. L. Sonnenfroh, D. M. Allen, M. G. “Measurements of CO, CO 2 , OH, and H 2 O in Room-Temperature and Combustion Gases by Use of a Broadly Current-Tuned Multisection InGaAsP Diode Laser,” Applied Optics 38 9 1506 1512 1999
  7. Wang, J. Maiorov, M. Baer, D. S. Garbuzov, D. Z. Connolly, J. C. Hanson, R. K. “In Situ Combustion Measurements of CO with Diode-Laser Absorption Near 2.3 µm,” Applied Optics 39 30 5579 5589 2000
  8. Wang, J. Maiorov, M. Jeffries, J. B. Garbuzov, D. Z. Connolly, J. C. Hanson, R. K. “A Potential Remote Sensor of CO in Vehicle Exhausts Using 2.3 µm Diode Lasers,” Meas Sci Technol 11 11 1576 1584 2000
  9. Ebert, V. Teichert, H. Strauch, P. Kolb, T. Seifert, H. Wolfrum, J. “Sensitive In Situ Detection of CO and O 2 in a Rotary Kiln-Based Hazardous Waste Incinerator Using 760 nm and New 2.3 µm Diode Lasers,” Proceedings of the Combustion Institute 30 1611 1618 2005 10.1016/j.proci.2004.08.224
  10. Awtry, A. R. Fisher, B. T. Moffatt, R. A. Ebert, V. Fleming, J. W. “Simultaneous Diode Laser Based In Situ Quantification of Oxygen, Carbon Monoxide, Water Vapor, and Liquid Water in a Dense Water Mist Environment,” Proceedings of the Combustion Institute 31 799 806 2007 10.1016/j.proci.2006.07.046
  11. Dally, B. B. Masri, A. R. Barlow, R. S. Fiechtner, G. J. “Two-Photon Laser-Induced Fluorescence Measurement of CO in Turbulent Non-Premixed Bluff Body Flames,” Combustion and Flame 132 1-2 272 274 2003
  12. Richter, M. Li, Z. S. Alden, M. “Application of Two-Photon Laser-Induced Fluorescence for Single-Shot Visualization of Carbon Monoxide in a Spark Ignited Engine,” Appl Spectrosc 61 1 1 5 2007
  13. Kim, D. Ekoto, I. Colban, W. F. Miles, P. C. “In-cylinder CO and UHC Imaging in a Light-Duty Diesel Engine during PPCI Low-Temperature Combustion,” SAE Intl. J. of Fuels Lubr 1 1 933 956 2008
  14. Chao, X. Jeffries, J. B. Hanson, R. K. “Absorption Sensor for CO in Combustion Gases Using 2.3 µm Tunable Diode Lasers,” Meas Sci Technol 20 11 2009 10.1088/0957-0233/20/11/115201
  15. Petersen, B. R. Ekoto, I. W. Miles, P. C. “Optical Investigation of UHC and CO Sources from Biodiesel Blends in a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime,” SAE Intl. J. of Fuels Lubr 1 1 414 434 2010
  16. Reid, J. Labrie, D. “2nd-Harmonic Detection with Tunable Diode-Lasers - Comparison of Experiment and Theory,” Appl Phys B-Photo 26 3 203 210 1981
  17. Silver, J. A. “Frequency-Modulation Spectroscopy for Trace Species Detection - Theory and Comparison among Experimental Methods,” Applied Optics 31 6 707 717 1992
  18. Allen, M. G. “Diode Laser Absorption Sensors for Gas-Dynamic and Combustion Flows,” Meas Sci Technol 9 4 545 562 1998
  19. Kluczynski, P. Axner, O. “Theoretical Description Based on Fourier Analysis of Wavelength-Modulation Spectrometry in Terms of Analytical and Background Signals,” Applied Optics 38 27 5803 5815 1999
  20. Liu, J. T. C. Jeffries, J. B. Hanson, R. K. “Large-Modulation-Depth 2f Spectroscopy with Diode Lasers for Rapid Temperature and Species Measurements in Gases with Blended and Broadened Spectra,” Applied Optics 43 35 6500 6509 2004
  21. Li, H. J. Rieker, G. B. Liu, X. Jeffries, J. B. Hanson, R. K. “Extension of Wavelength-Modulation Spectroscopy to Large Modulation Depth for Diode Laser Absorption Measurements in High-Pressure Gases,” Applied Optics 45 5 1052 1061 2006
  22. De Zilwa, S. Steeper, R. R. “Acquisition of Corresponding Fuel Distribution and Emissions Measurements in HCCI Engines,” SAE Technical Paper 2005-01-3748 2005 10.4271/2005-01-3748
  23. Fitzgerald, R. P. Steeper, R. R. Snyder, J. A. Hanson, R. K. Hessel, R. P. “Determination of Bulk Cylinder Temperatures and Residual Gas Fraction for HCCI Negative Valve Overlap Operation,” SAE Intl. J. of Engines 1 1 124 141 2010
  24. Fitzgerald, R. P. Steeper, R. R. “Thermal and Chemical Effects of NVO Fuel Injection on HCCI Combustion,” SAE Intl. J. of Engines 1 1 46 64 2010
  25. Cassidy, D. T. Reid, J. “Atmospheric-Pressure Monitoring of Trace Gases Using Tunable Diode-Lasers,” Applied Optics 21 7 1185 1190 1982

Cited By