This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Measurement and Computation of the Characteristics of Progressive Valve Springs
Technical Paper
2010-01-1056
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Historically, when valve springs were wound with round wire and the coils were nominally equally spaced, it was relatively easy for the engineer to calculate the virtually-linear load carrying capacity, the almost non-varying stiffness and the relatively-constant natural frequency of the spring. This was the design data that was required then for some simplistic but effective calculations of the valvetrain dynamic stability. In recent times, valve springs have come to be commonly wound with other wire sections such as ovate and with coil-coil spacings that are unequal, giving the spring a variable load carrying capacity, variable stiffness and a variable natural frequency with deflection. Such springs are known as progressive wound springs. The computation of these spring characteristics is no longer a simple matter and neither is their incorporation within the calculation of the dynamic stability of the entire valvetrain. The technical literature is very sparse on these topics. This paper presents the detailed measured characteristics of stiffness and natural frequency of five differing progressive-wound valve springs and compares and contrasts the measurements with those computed by two methods, a commercially-available FEA software package and a more traditionally-based theoretical method.
Recommended Content
Technical Paper | Solver Embedded Fatigue |
Technical Paper | Optimal Sound Package Design Using Statistical Energy Analysis |
Technical Paper | Evaluating the Load Distribution Factor for Spur Gears |
Authors
Citation
Blair, G., McCartan, C., and Cahoon, W., "Measurement and Computation of the Characteristics of Progressive Valve Springs," SAE Technical Paper 2010-01-1056, 2010, https://doi.org/10.4271/2010-01-1056.Also In
References
- Wahl A.M. “Mechanical Springs” McGraw-Hill 2nd 1963
- Benham P.P. Crawford R.J. Armstrong C.G. “Mechanics of Engineering Materials” 2nd Prentice Hall 1996 0-582-25164-8 240
- Blair G.P. McCartan C.D. Cahoon W.M. “Valve Spring Design Paper 1” Race Engine Technology 7 1 January 2009
- Blair G.P. McCartan C.D. Cahoon W.M. “Valve Spring Design Paper 3” Race Engine Technology 7 4 April 2009
- Blair G.P. McCartan C.D. Cahoon W.M. “Valve Spring Design Paper 2” Race Engine Technology 7 2 February 2009
- Blair G.P. McCartan C.D. Cahoon W.M. “Valve Spring Design Paper 2 Appendix” Race Engine Technology 7 3 March 2009
- ANSYS FEA Mechanical Design and Analysis software ansys.com
- Wang, Y. “Introduction to Engine Valvetrains,” SAE International Warrendale, PA 978-0-7680-1079-4 2006
- Flenker C. Uphoff U. “Efficient Valve-Spring Modelling with MBS Valve-Train Design” MTZ 12 2005 66 946
- Lin, Y. Ramachandra, P. Tanaka, Y. Tawata, K. et al. “Valve Train Dynamic Analysis and Validation,” SAE Technical Paper 2004-01-1457 2004
- Smith S.P. Schoof L. “Development of a Valve Train Simulation Process using ADAMS/Engine and Lotus Concept Valve Train” MDI North American User Conference 2002 Mechanical Dynamics Inc L
- McLaughlin S. Haque I. “Development of a Multi-Body Simulation of a Winston Cup Valvetrain to Study Valve Bounce” Proc.I.Mech.E 2002 216 237 248
- 4stHEAD design software Prof. Blair & Associates Belfast, N. Ireland profblairandassociates.com
- Blair G.P. “Valvetrain Design for MotoGP Engines” Race Engine Technology June 2007
- www.profblairandassociates.com/RET_Articles.html
- www.profblairandassociates.com/pdfs/RET035_Blair.pdf
- www.profblairandassociates.com/pdfs/RET036_Blair.pdf
- www.profblairandassociates.com/pdfs/RET037_Blair.pdf
- www.profblairandassociates.com/pdfs/RET038_Blair.pdf