This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development
Technical Paper
2009-01-2261
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
This study outlines a protocol for image data collection acquired from human volunteers. The data set will serve as the foundation of a consolidated effort to develop the next generation full-body Finite Element Analysis (FEA) models for injury prediction and prevention.
The geometry of these models will be based off the anatomy of four individuals meeting extensive prescreening requirements and representing the 5th and 50th percentile female, and the 50th and 95th percentile male. Target values for anthropometry are determined by literature sources. Because of the relative strengths of various modalities commonly in use today in the clinical and engineering worlds, a multi-modality approach is outlined. This approach involves the use of Computed Tomography (CT), upright and closed-bore Magnetic Resonance Imaging (MRI), and external anthropometric measurements. CT data provide sub-millimeter resolution and slice thickness of the subjects in the supine and an approximately seated position. Closed-bore MRI complements CT data by providing high-resolution images with improved contrast between soft tissues. MRI pulse sequences that image fat-water interfaces out of phase are used to enhance contrast and facilitate segmenting organ and muscle boundaries.
Upright MRI data complement closed-bore data by enabling quantification of morphological changes that occur when a subject is oriented upright with respect to gravity. The final component in this suite of image data is a set of external anthropometry (EA) measurements. EA measurements include three-dimensional point cloud acquisition of external bony landmarks as well as surface contours. These data serve as a valuable geometric validation tool for the assembled full-body FEA models.
Protocol development results, including preliminary image data sets, in-plane resolution and slice thickness achieved for each modality, pulse sequence designs for MRI acquisition protocols, and custom positioning systems used in image acquisition are presented. The approach outlined in this study is expected to provide sufficient data to develop models in both the seated and standing posture. This suite of imaging and anthropometry data will serve as a strong foundation for the collaborative development of a group of full-body FEA models for injury prediction in the coming years.
Recommended Content
Technical Paper | Digital Elderly Human Body Modeling |
Technical Paper | Virtual Body Generator for Anthropometry and Physiology Based Modeling |
Technical Paper | Statistical Approach to a Model-based Anthropometry Description |
Authors
- F. Scott Gayzik - Wake Forest University School of Medicine
- Craig A. Hamilton - Wake Forest University School of Medicine
- Josh C. Tan - Wake Forest University School of Medicine
- Craig McNally - Virginia Tech
- Stefan M. Duma - Virginia Tech
- Kathleen D. Klinich - University of Michigan Transportation Research Institute
- Joel D. Stitzel
Topic
Citation
Gayzik, F., Hamilton, C., Tan, J., McNally, C. et al., "A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development," SAE Technical Paper 2009-01-2261, 2009, https://doi.org/10.4271/2009-01-2261.Also In
References
- National Highway Traffic Safety Administration 2006 Traffic Safety Facts 2006: A compilation of motor vehicle crash data from the Fatality Analysis Reporting System and the General Estimates System US Dept. of Transportation Washington, DC
- Spitzer, V. Ackerman, M.J. Scherzinger, A.L. Whitlock, D. 1996 The visible human male: a technical report J Am Med Inform Assoc. 3 2 118 130
- Spitzer, V.M. Whitlock, D.G. 1998 The Visible Human Dataset: the anatomical platform for human simulation Anat Rec 253 2 49 57
- Ruan, J. El-Jawahri, R. Chai, L. Barbat, S. Prasad, P. 2003 Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model Stapp Car Crash J. 47 299 321
- Ruan, J.S. El-Jawahri, R. Barbat, S. Prasad, P. 2005 Biomechanical analysis of human abdominal impact responses and injuries through finite element simulations of a full human body model Stapp Car Crash J. 49 343 366
- Lee, J.B. Yang, K.H. 2001 Development of a finite element model of the human abdomen Stapp Car Crash J. 45 79 100
- Bajka, M. Manestar, M. Hug, J. Szekely, G. Haller, U. Groscurth, P. 2004 Detailed anatomy of the abdomen and pelvis of the visible human female Clin Anat. 17 3 252 260
- Robin, S. 2001 Human Model for Safety - A joint effort towards the development of redefined human-like car-occupant models 17th International Conference on the Enhanced Safety of Vehicles Amsterdam
- Robbins, D. 1983 Anthropometric specifications for mid-sized male dummy 2 DOT/HS 806 715 US Dept. of Transportation Washington, DC
- Iwamoto M Kisanuki Y Wantanabe I Furusu K Miki K Hasegawa J. 2002 Development of an finite element model of the Total Human Model for Safety (THUMS) and application to injury reconstruction International Research Council on the Biomechanics of Injury (IRCOBI) Munich
- Iwamoto M Miki K Mohammad M Nayef A. Yang K.H. Begeman, P.C. King, A.I. 2000 Development of a finite element model of the human shoulder Stapp Car Crash J. 44 281 297
- Kimpara H Lee JB Yang KH King, A.I. Iwamoto, M. Wantabe, I. Miki, K. 2005 Development of a three-dimensional finite element chest model for the 5th percentile female Stapp Car Crash J. 49 251 269
- Schneider, L. Robbins, D. Pflug, M. Snyder, R. 1983 Development of anthropometrically based design specifications for an advanced adult anthropomorphic dummy family DOT/HS 806 715 US Department of Transportation Washington, DC
- Yang, K.H. Hu, J. White, N.A. King, A.I. Chou, C.C. Prasad, P. 2006 Development of numerical models for injury biomechanics research: A review of 50 years of publications in the Stapp Car Crash Conference Stapp Car Crash J. 50 429 490
- Gordon, C.C. Churchill, T. Clauser, C.E. Bradtmiller, B. McConville, J.T. Tebbetts, Il Walker, R.A. 1989 1988 Anthropometric survey of U.S. army personnel: Methods and summary statistics Technical Report: Natick/TR-89/044 United States Army Natick Research, Development and Engineering Center Natick, MA
- Gayzik, F.S. Martin, S.M. Gabler, H.C. Hoth, J.J. Duma, S.M. Meredith, J.W. Stitzel, J.D. 2009 Characterization of crash-induced thoracic loading resulting in pulmonary contusion J. Trauma 66 3 840 849
- Sparks, J.L. Bolte, J.H. 4th Dupaix, R.B. Jones, K.H. Steinburg, S.M. Herriott, R.G. Stammen, J.A. Donnelly, B.R. 2007 Using pressure to predict liver injury risk from blunt impact Stapp Car Crash J. 51 401 32
- Siegel, J.H. Yang, K.H. Smith J.A. Siddiqi, S.Q. Shah, C. Maddali, M. Hardy, W. 2006 Computer simulation and validation of the Archimedes Lever hypothesis as a mechanism for aortic isthmus disruption in a case of lateral impact motor vehicle crash: a Crash Injury Research Engineering Network (CIREN) study J. Trauma 60 5 1072 82