This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines

Journal Article
2009-01-1423
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 20, 2009 by SAE International in United States
Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines
Sector:
Citation: Nefischer, A., Hallmannsegger, M., Wimmer, A., and Pirker, G., "Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines," SAE Int. J. Engines 2(1):1251-1264, 2009, https://doi.org/10.4271/2009-01-1423.
Language: English

References

  1. Schubert C. Wimmer A. Chmela F. Advanced Heat Transfer Model for CI Engines SAE World Congress, 2005-01-0695 2005
  2. Eichlseder H. Wallner T. Freymann R. Ringler J. The Potential of Hydrogen Internal Combustion Engines in a Future Mobility Scenario SAE World Congress, 2003-01-2267 2003
  3. Gerbig F. Strobl W. Eichlseder H. Wimmer A. Potentials of the Hydrogen Combustion Engine with Innovative Hydrogen-Specific Combustion Process FISITA World Automotive Congress, F2004V113 2004
  4. Wimmer A. Wallner Th. Ringler J. Gerbig F. H2-Direct Injection – A Highly Promising Combustion Concept SAE World Congress, 2005-01-0568 2005
  5. Gerbig F. Heller K. Ringler J. Eichlseder H. Grabner P. Innovative Brennverfahrenskonzepte für Wasserstoffmotoren 11th Symposium on the Working Process of the Internal Combustion Engine 2007
  6. Pischinger R. Klell M. Sams Th. Thermodynamik der Verbrennungskraftmaschine 2nd Springer-Verlag Wien New York 2002
  7. Woschni G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine SAE World Congress, 670931 1967
  8. Huber K. Woschni G. Zeilinger K. Investigations on Heat Transfer in Internal Combustion Engines under Low Load and Motoring Conditions SAE World Congress, 905018 1990
  9. Michl J. Schenk M. Rottengruber H. Huhn W. Thermal Boundary Conditions for a Hydrogen SI-Engine 8th International Symposium on Combustion Diagnostics 2008
  10. Borgnakke C. Arpaci V. S. Tabaczynski R. J. A Model for the Instantaneous Heat Transfer and Turbulence in a Spark Ignition Engine SAE World Congress, 800287 1980
  11. Morel T. Keribar R. Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-in-Piston Combustion Chambers SAE World Congress, 850204 1985
  12. Schlichting H. Gersten K. Boundary-Layer Theory 8th Springer Berlin 2000
  13. Messner D. Wimmer A. Gerke U. Gerbig F. Application and Validation of the 3D CFD method for a Hydrogen Fueled IC Engine with Internal Mixture Formation SAE World Congress, 2006-01-0448 2006
  14. Gordon S. McBride B. J. Computer program for calculation of complex chemical equilibrium compositions and applications NASA reference publication 1311 1994
  15. Peters N. Warnatz J. Numerical Methods in Laminar Flame Propagation Vieweg 1982
  16. Mathur S. Tondon O. Saxena S. 1967 Thermal Conductivity of Binary, Ternary and Quaternary Mixtures of Rare Gases Molecular Physics 11 569 579
  17. Woschni G. 1965 Beitrag zum Problem des Wärmeübergangs im Verbrennungsmotor MTZ Motortechnische Zeitschrift 26 4 128 133
  18. Hirschfelder J. O. Curtiss C. F. Bird R. B. Molecular Theory of Gases and Liquids John Wiley and Sons, Inc. New York 1954
  19. Wilke C. R. 1950 A Viscosity Equation for Gas Mixtures The Journal of Chemical Physics 18 4 517 519
  20. Owston R. Magi V. Abraham J. Wall Interactions of Hydrogen Flames compared with Hydrocarbon Flames SAE World Congress, 2007-01-1466 2007
  21. Hall M. J. Bracco F. V. A Study of Velocities and Turbulence Intensities Measured in Firing and Motored Engines SAE World Congress, 870453 1987
  22. Wimmer A. Chmela F. Dimitrov D. Eichlseder H. Messner D. Prediction of Heat Release for Hydrogen IC Engines with Port Injection 1st International Symposium on Hydrogen Internal Combustion Engines 2006
  23. Jobst J. Chmela F. Wimmer A. Simulation von Zündverzug, Brennrate und NOx-Bildung für direktgezündete Gasmotoren 1st Tagung Motorprozesssimulation und Aufladung 2005
  24. Magnussen B. F. Hjertager B. H. On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion 16th International Symposium on Combustion 1976
  25. Chmela F. Engelmayer M. Beran R. Ludu A. Vorausberechnung von Brennverlauf und NOx-Emission für Gasmotoren mit Funkenzündung 3rd Dessauer Gasmotoren-Konferenz 2003
  26. Gülder Ö. L. Turbulent Premixed Flame Propagation Models for Different Combustion Regimes 23rd International Symposium on Combustion 1990
  27. Gerke U. Boulouchos K. Rebecchi P. Steurs K. Derivation of burning velocities of premixed hydrogen/air flames at engine-relevant conditions using a single-cylinder compression machine with optical access Smart Energy Conference 2008
  28. Conaire M. Ó. Curran H. J. Simmie J. M. Pitz W. J. Westbrook C. K. 2004 A comprehensive modeling study of hydrogen oxidation International Journal of Chemical Kinetics 36 603 622
  29. Wimmer A. Pivec R. Sams Th. Heat Transfer to the Combustion Chamber and Port Walls of IC Engines – Measurement and Prediction SAE World Congress, 2000-01-0568 2000

Cited By