This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effects of Fuel Physical Properties on Diesel Engine Combustion using Diesel and Bio-diesel Fuels

Journal Article
2008-01-1379
ISSN: 1946-3952, e-ISSN: 1946-3960
Published April 14, 2008 by SAE International in United States
Effects of Fuel Physical Properties on Diesel Engine Combustion using Diesel and Bio-diesel Fuels
Sector:
Citation: Ra, Y., Reitz, R., McFarlane, J., and Daw, C., "Effects of Fuel Physical Properties on Diesel Engine Combustion using Diesel and Bio-diesel Fuels," SAE Int. J. Fuels Lubr. 1(1):703-718, 2009, https://doi.org/10.4271/2008-01-1379.
Language: English

References

  1. Fuel Fact Sheets, National Biodiesel Board, www.biodiesel.org.
  2. Akasaka, Y., Suzuki, T., and Sakurai, Y. 1997. “Exhaust Emissions of a DI Diesel Engine Fueled with Blends of Biodiesel and Low Sulfur Diesel Fuel,” SAE 972998, 1997.
  3. McCormick, R. L., Alvarez, J. R., Graboski, M. S., Tyson, K. S., and Vertin, K., “Fuel Additive and Blending Approaches to Reducing NOx Emissions from Biodiesel,” SAE 2002-01-1658, 2002.
  4. Szybist, J. P., and Boehman, A. L., “Behavior of a Diesel Injection System with Biodiesel Fuel,” SAE 2003-01-1039, 2003.
  5. Tat, M. E., Van Geroen, J. H., and Wang, P. S., “Fuel Property Effects on Injection Timing, Ignition Timing and Oxides of Nitrogen Emissions from Biodiesel-Fueled Engines,” 2004 ASAE/CSAE Annual International Meeting, Ottowa, Ontario, Canada, August 1-4, 2004.
  6. Cheng, A.S., Upatnieks, A., and Mueller, C.J., “Investigation of the impact of biodiesel fuelling on NOx emissions using an optical direct injection diesel engine,” Int. J. Engine. Research, 7, 297-318, 2006.
  7. Marchese, A. J., Vaughn, T. L., Hammill, M., and Harris, M., “Ignition Delay of Bio-Ester Fuel Droplets,” SAE 2006-01-3302, 2006.
  8. Chakravarthy, K., McFarlane J., Daw, S.C. Ra, Y. and Reitz, R.D., “Physical Properties of Soy Bio-diesel & Implications for Use of Bio-diesel in Diesel Engines,” SAE 2007-01-4030, 2007.
  9. Brakora, J.L., Ra, Y., Reitz, R.D., McFarlane J., and Daw, S.C, “Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations,” submitted to SAE 2008 World Congress, 2007.
  10. Yuan, W., Hansen, A.C., Zhang, Q., “Predicting the physical properties of biodiesel for combustion modeling,” Transactions of the ASAE 46(6), 1487-1493, 2003.
  11. Reid, R.C., Prausnitz, J.M., Sherwood, T.K., “Properties of Gases and Liquids, 4th Ed., New York, N.Y., McGraw-Hill, 1987.
  12. Yamane, K., Ueta, A., Shimamoto, Y., “Influence of physical and chemical properties of biodiesel fuel on injection, combustion, and exhaust emission characteristics in a DI-CI engine,” In Proceedings of the 5th International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, COMODIA 2001, July 1-4, 2001, Nagoya.
  13. Allan, C.A.W., Watts, K.C., Ackman, R.G., Pegg, M.J., Fuel 78, 1319, 1999.
  14. Schumacher, L., Chellappa, A., Wetherell, W., Russell, M.D., “The physical and chemical characterization of biodiesel low sulfur diesel fuel blends,” National Biodiesel Board, U. Missouri, Dec. 20, 1995.
  15. Herb, S.F., Magidman, P., Reimansc, R.W., “Observations on response factors for thermal conductivity detectors in GLC analysis of fatty acid methyl esters,” J. Am. Oil Chemists Soc. 44(1), p. 32, 1967.
  16. Tseng, C.C., Viskanta, R., “Effect of radiation absorption on fuel droplet evaporation,” Combustion Science and Technology 177 (8), 1511-1542, 2005.
  17. Huber, M.L., Perkins, R.A., “Thermal conductivity correlations for minor constituent fluids in natural gas: n-octane, n-nonane, and n-decane,” Fluid Phase Equilibria 227, 47-55, 2005.
  18. Skelland, A.H.P., Diffusional Mass Transfer, Krieger Publishing Company, Malabar FL.
  19. Chung, T.-H., Ajlan, M., Lee, L.L., Starling, K.E., “Generalized multiparameter correlation for nonpolar and polar fluid transport properties,” Ind. Eng. Chem. Res. 27, 671-679, 1988.
  20. Chung, T.H., Lee, L.L., Starling, K.E., “Applications of kinetic gas theory and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity,” Ind. Eng. Chem. Fundam. 23, 8-13, 1984.
  21. Duran, A., Carmona, M., Monteagudo, J.M., “Modeling soot and SOF emissions from a diesel engine”, Chemosphere 56(3), 209-225, 2004.
  22. Fisher, E.M., Pitz, W.J., Curran, H.J., Westbrook, C.K., “Detailed chemical kinetics mechanisms for the combustion of oxygenated fuels,” Proceedings of the Combustion Institute 28, 1579-1586, 2000.
  23. Tamim, J., Hallett, W.L.H., “A continuous thermodynamics model for multicomponent droplet vaporization,” Chem. Eng. Science 50, 2933-2942, 1995.
  24. Tat, M.E., van Gerpen, J.H., “The specific gravity of biodiesel and its blends with diesel fuel,” The Journal of the American Oil Chemists' Society 77(2), 115-119, 2000.
  25. Yaw, C. L., CRC Handbook of Chemicals and Physics, various editions; and Chemical Properties Handbook, McGraw-Hill Publishing Company, 1999.
  26. van Bommel, M.J., Oonk, H.A.J., van Miltenberg, J.C., “Heat capacity measurements of 13 methyl esters of n-carboxylic acids from methyl octanoate to methyl eicosanoate between 5K and 350K,” J. Chem. Eng. Data 49, 1036-1042, 2004.
  27. Gallant, R.W., and Yaws, C.L., Physical Properties of Hydrocarbons, 3rd ed., Houston, Gulf Pub. Co., 1995.
  28. Amsden, A.A., KIVA-3V, Release 2, Improvements to KIVA-3V, LA-UR-99-915, 1999.
  29. Kee, R.J., Rupley, F.M., Miller, J.A., “CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics,” Sandia Report SAND 89-8009, 1989.
  30. Beale, J.C., and Reitz, R.D., “Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model,” Atomization and Sprays, 9, 623-650, 1999.
  31. Liu, A.B., Mather, D., Reitz, R.D., “Modeling the Effects of Drop Drag and Breakup on Fuel Sprays,” SAE 930072, 1993.
  32. Ra, Y., and Reitz, R.D., “A Model for Droplet Vaporization for Use in Gasoline and HCCI Engine Applications,” Journal of Engineering for Gas Turbines & Power, 126(2), 422-428, 2004.
  33. Ra, Y. and Reitz, R.D., “The Application of a Multi-Component Vaporization Model to Gasoline Direct Injection Engines,” Int. J. of Engine Research, 4(3), 193-218, 2003.
  34. O'Rourke, P.J., and Amsden, A. A., “A spray/wall interaction submodel for the KIVA-3 wall film model,” SAE 2000-01-0271, 2000.
  35. Opat, R., Ra, Y., Gonzalez, M.A., Krieger, D., R., Reitz, R.D., Foster, D. E., Durrett, R.P., and Siewert, R.M., “Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine,” SAE 2007-01-0193, 2007.
  36. Patel, A., Kong, S.C., and Reitz, R.D., “Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations,” SAE 2004-01-0558, 2004.
  37. http://www.me.berkeley.edu/gri_mech/
  38. Kong, S.C., Sun, Y., and Reitz, R.D., “Modeling Diesel Spray Flame Lift-Off, Sooting Tendency and NOx Emissions Using Detailed Chemistry with Phenomenological Soot Model,” Journal of Gas Turbines and Power, 129, 245-251, 2007.
  39. Hiroyasu, H. and Kadota, T., “Models for Combustion and Formation of Nitric Oxide and Soot in DI Diesel Engines,” SAE 760129, 1979.
  40. Araújo, M.E., Meireles, M.A.A., “Improving phase equilibrium calculation with the Peng-Robinson EOS for fats and oils related compounds/supercritical CO2 systems.” Fluid Phase Equilibria 169, 49-64, 2000.

Cited By