This content is not included in your SAE MOBILUS subscription, or you are not logged in.

3D-printed high-temperature ceramics

  • Magazine Feature Article
  • 16AUTP03_08
Published March 01, 2016 by SAE International in United States
Sector:
Language:
  • English

Heat-resistant ceramics are useful for making components such as engine hot parts, rocket nozzles, and nose cones that have to contend with high temperatures or extreme environments. The trouble is it's not at all easy to cast or machine these heat-stable engineering ceramics into the necessary complex shapes.

In recent years, 3D-printing processes have been developed that enable much greater geometrical flexibility in fabricating ceramics. But whether the process deposits photosensitive resins that contain ceramic particles, jets binders onto ceramic particles, or fuses beds of ceramic powder with lasers, current additive manufacturing (AM) methods are limited by slow fabrication rates. Plus, they are often followed by a time-consuming binder-removal process. In any case, the physical properties of the final components are not optimal, yielding unreliable, low-strength parts that suffer from residual porosity, cracks, and/or inhomogeneities.